Home
Class 12
MATHS
If in triangle ABC, vec(AB) = vecu/|vec...

If in triangle ABC, ` vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (2vecu)/|vecu| , " where " |vecu| ne |vecv|` , then `(a)1 + cos 2A + cos 2B + cos 2C=0` (b)`sin A = cos C` (c)projection of AC on BC is equal to BC (d) projection of AB on BC is equal to AB

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If in triangle A B C , vec A B= vec u/(| vec u|)- vec v/(| vec v|)a n d vec A C=(2 vec u)/(| vec u|),w h e r e| vec u|!=| vec v|, then a. 1+cos2A+cos2B+cos2C=0 b. sinA=cos C c. projection of A C on B C is equal to B C d. projection of A B on B C is equal to A B

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

Assertion : If in a /_\ABC, vec(BC)=vecp/|vecp|-vecq/|vecq| and vec(AC)=(2vecp)/|vecp|,|vecp|!=|veq| then the value of cos2A+cos2B+cos2C is -1., Reason: If in /_\ABC, /_C=90^0 then cos2A+cos2B+cos2C=-1 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

In Delta ABC of a :b:c= 7 : 8: 9 .Then cos A : cos B is equal to :-

If vecV=2veci+3vecj and vecY=veci-5vecj , the resultant vector of 2vecU+3vecV equals

In any DeltaABC, 2 [bc cos A + ca cos B+ ab cos C]=

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw .vecu is (a) 47 (b) -25 (c) 0 (d) 25