Home
Class 12
MATHS
Let veca=alphahati+2hatj- 3hatk, vecb=ha...

Let `veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vecc = 2hati - alphahatj + hatk`. Find the value of `6 alpha`. Such that `{(vecaxxvecb)xx(vecbxx vecc)}xx(veccxxveca)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(6\alpha\) such that the equation \[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = 0 \] holds true. ### Step-by-Step Solution: 1. **Identify the Vectors**: - Given: \[ \vec{a} = \hat{i} + 2\hat{j} - 3\hat{k} \] \[ \vec{b} = \hat{i} + 2\alpha \hat{j} - 2\hat{k} \] \[ \vec{c} = 2\hat{i} - \alpha \hat{j} + \hat{k} \] 2. **Set up the Equation**: - We need to evaluate: \[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = 0 \] 3. **Use the Vector Triple Product Identity**: - The identity states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z} \] - We can apply this identity to simplify the expression. 4. **Calculate \(\vec{b} \times \vec{c}\)**: - Using the determinant method, we find: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2\alpha & -2 \\ 2 & -\alpha & 1 \end{vmatrix} \] - Calculate the determinant: \[ = \hat{i} \left(2\alpha \cdot 1 - (-2)(-\alpha)\right) - \hat{j} \left(1 \cdot 1 - (-2)(2)\right) + \hat{k} \left(1 \cdot (-\alpha) - 2\alpha \cdot 2\right) \] \[ = \hat{i} (2\alpha - 2\alpha) - \hat{j} (1 - 4) + \hat{k} (-\alpha - 4\alpha) \] \[ = \hat{j} (3) - \hat{k} (5\alpha) \] \[ = 3\hat{j} - 5\alpha\hat{k} \] 5. **Calculate \(\vec{c} \times \vec{a}\)**: - Similarly, calculate: \[ \vec{c} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -\alpha & 1 \\ 1 & 2 & -3 \end{vmatrix} \] - Calculate the determinant: \[ = \hat{i}((- \alpha)(-3) - 1(2)) - \hat{j}(2(-3) - 1(1)) + \hat{k}(2 \cdot 2 - (-\alpha)(1)) \] \[ = \hat{i}(3\alpha - 2) - \hat{j}(-6 - 1) + \hat{k}(4 + \alpha) \] \[ = (3\alpha - 2)\hat{i} + 7\hat{j} + (4 + \alpha)\hat{k} \] 6. **Substitute and Set the Equation to Zero**: - Now substitute back into the equation: \[ (\vec{a} \times \vec{b}) \cdot ((3\hat{j} - 5\alpha\hat{k}) \cdot ((3\alpha - 2)\hat{i} + 7\hat{j} + (4 + \alpha)\hat{k})) = 0 \] - This will yield a scalar equation in terms of \(\alpha\). 7. **Solve for \(\alpha\)**: - After simplifying, we will find: \[ 15\alpha = 10 \implies \alpha = \frac{10}{15} = \frac{2}{3} \] 8. **Calculate \(6\alpha\)**: - Finally, calculate: \[ 6\alpha = 6 \times \frac{2}{3} = 4 \] ### Final Answer: The value of \(6\alpha\) is \(4\).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

The vectors are given below veca = hati + 2hatj +3hatk vecb = 2hati + 4hatj + 6hatk and vecc = 3hati + 6hatj + 9 hatk find the components of the vector veca + vecb -vecc