Home
Class 12
MATHS
If the position vectors of the vertices ...

If the position vectors of the vertices A,B and C of a `triangleABC` are respectively `4hati + 7hatj + 8hatk, 2hati + 4hatk` and `2hati + 5 hatj + 7hatk`,then the positions vector of the point, where the bisector of `angleA` meets BC is:

A

`1/2(4hati + 8hatj + 11hatk)`

B

`1/3(6hati + 13hatj + 18hatk)`

C

`1/4(8hati + 14hatj + 19hatk)`

D

`1/3(6hati + 11hatj + 15hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector of the point where the angle bisector of angle A meets side BC in triangle ABC, we will follow these steps: ### Step 1: Identify the position vectors of points A, B, and C. Given: - Position vector of A, \( \vec{A} = 4\hat{i} + 7\hat{j} + 8\hat{k} \) - Position vector of B, \( \vec{B} = 2\hat{i} + 0\hat{j} + 4\hat{k} \) - Position vector of C, \( \vec{C} = 2\hat{i} + 5\hat{j} + 7\hat{k} \) ### Step 2: Calculate the vectors AB and AC. - \( \vec{AB} = \vec{B} - \vec{A} = (2\hat{i} + 0\hat{j} + 4\hat{k}) - (4\hat{i} + 7\hat{j} + 8\hat{k}) \) - \( \vec{AB} = (2 - 4)\hat{i} + (0 - 7)\hat{j} + (4 - 8)\hat{k} = -2\hat{i} - 7\hat{j} - 4\hat{k} \) - \( \vec{AC} = \vec{C} - \vec{A} = (2\hat{i} + 5\hat{j} + 7\hat{k}) - (4\hat{i} + 7\hat{j} + 8\hat{k}) \) - \( \vec{AC} = (2 - 4)\hat{i} + (5 - 7)\hat{j} + (7 - 8)\hat{k} = -2\hat{i} - 2\hat{j} - 1\hat{k} \) ### Step 3: Calculate the magnitudes of vectors AB and AC. - \( |\vec{AB}| = \sqrt{(-2)^2 + (-7)^2 + (-4)^2} = \sqrt{4 + 49 + 16} = \sqrt{69} \) - \( |\vec{AC}| = \sqrt{(-2)^2 + (-2)^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \) ### Step 4: Use the angle bisector theorem to find the position vector of point D. According to the angle bisector theorem: \[ \vec{D} = \frac{|\vec{AC}| \cdot \vec{B} + |\vec{AB}| \cdot \vec{C}}{|\vec{AC}| + |\vec{AB}|} \] Substituting the values: \[ \vec{D} = \frac{3 \cdot (2\hat{i} + 0\hat{j} + 4\hat{k}) + \sqrt{69} \cdot (2\hat{i} + 5\hat{j} + 7\hat{k})}{3 + \sqrt{69}} \] ### Step 5: Calculate the components of vector D. Calculating the numerator: \[ 3 \cdot (2\hat{i} + 0\hat{j} + 4\hat{k}) = 6\hat{i} + 0\hat{j} + 12\hat{k} \] \[ \sqrt{69} \cdot (2\hat{i} + 5\hat{j} + 7\hat{k}) = 2\sqrt{69}\hat{i} + 5\sqrt{69}\hat{j} + 7\sqrt{69}\hat{k} \] Combining these: \[ \vec{D} = \frac{(6 + 2\sqrt{69})\hat{i} + (0 + 5\sqrt{69})\hat{j} + (12 + 7\sqrt{69})\hat{k}}{3 + \sqrt{69}} \] ### Step 6: Finalize the position vector of point D. Thus, the position vector of point D, where the angle bisector of angle A meets side BC, is: \[ \vec{D} = \frac{(6 + 2\sqrt{69})\hat{i} + (5\sqrt{69})\hat{j} + (12 + 7\sqrt{69})\hat{k}}{3 + \sqrt{69}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If the position vectors of the vertices of a triangle of a triangle are 2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk , then the triangle is

The position vectors of the vertices A,B and C of a triangle are hati-hatj-3hatk,2hati+hatj-2hatk and -5hati+2hatj-6hatk , respectively. The length of the bisector AD of the angleBAC , where D is on the segment BC, is

If the position vectors of the vertices A,B and C of a DeltaABC are 7hatj+10k,-hati+6hatj+6hatk and -4hati+9hatj+6hatk , respectively, the triangle is

If the position vectors of the vertices of a triangle be 2hati+4hatj-hatk,4hati+5hatj+hatk and 3 hati+6hatj-3hatk , then the triangle is

If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are the position vectors of the vertices A, B and C, respectively, of triangle ABC, then the position vector of the point where the bisector of angle A meets BC is

The position vectors of the points A,B and C are hati+2hatj-hatk,hati+hatj+hatk and 2hati+3hatj+2hatk , respectively. If A is chosen as the origin, then the position vectors of B and C are

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A,B, and C are hati+2hatj-hatk, hati+hatj+hatk , and 2hati+3hatj+2hatk respectively. If A is chosen as the origin, then the position vectors B and C are

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let vec u be a vector coplanar with the vectors vec a = 2 hat i + 3 ha...

    Text Solution

    |

  2. If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vec...

    Text Solution

    |

  3. If the position vectors of the vertices A,B and C of a triangleABC are...

    Text Solution

    |

  4. Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be ...

    Text Solution

    |

  5. Let veca=2hati+hatj-2hatk and vecb=hati+hatj. Let vecc be a vector suc...

    Text Solution

    |

  6. The area (in sq units) of the parallelogram whose diagonals are along ...

    Text Solution

    |

  7. If the vector vecb = 3hati + 4hatk is written as the sum of a vector v...

    Text Solution

    |

  8. let veca, vecb and vecc be three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  9. In a triangle ABC , right angled at the vertex A , if the position vec...

    Text Solution

    |

  10. Let ABC be a triangle whose circumcenter is at P, if the positions vec...

    Text Solution

    |

  11. Let veca, vecb and vecc be non-zero vectors such that (veca xx vecb) x...

    Text Solution

    |

  12. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  13. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  14. If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2,...

    Text Solution

    |

  15. If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are t...

    Text Solution

    |

  16. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  17. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  18. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  19. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  20. If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |