Home
Class 12
MATHS
Let veca = hati + hatj +hatjk, vecc =hat...

Let `veca = hati + hatj +hatjk, vecc =hatj - hatk` and a vector `vecb` be such that `veca xx vecb = vecc` and `veca.vecb=3`. Then `|vecb|` equals:

A

`sqrt(11/3)`

B

`11/sqrt(3)`

C

`sqrt(11)/3`

D

`11/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the vectors Let \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\) and \(\vec{c} = \hat{j} - \hat{k}\). We need to find \(\vec{b}\) such that \(\vec{a} \times \vec{b} = \vec{c}\) and \(\vec{a} \cdot \vec{b} = 3\). ### Step 2: Assume the form of vector \(\vec{b}\) Let \(\vec{b} = x \hat{i} + y \hat{j} + z \hat{k}\). ### Step 3: Compute the cross product \(\vec{a} \times \vec{b}\) Using the determinant form for the cross product, we have: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} \] Calculating the minors: \[ = \hat{i} (1z - 1y) - \hat{j} (1z - 1x) + \hat{k} (1y - 1x) \] This simplifies to: \[ = (z - y) \hat{i} - (z - x) \hat{j} + (y - x) \hat{k} \] ### Step 4: Set the cross product equal to \(\vec{c}\) We have: \[ (z - y) \hat{i} - (z - x) \hat{j} + (y - x) \hat{k} = \hat{j} - \hat{k} \] From this, we can equate the coefficients: 1. \(z - y = 0\) (1) 2. \(- (z - x) = 1\) (2) 3. \(y - x = -1\) (3) ### Step 5: Solve the equations From equation (1), we have: \[ z = y \] Substituting \(z = y\) into equation (2): \[ - (y - x) = 1 \implies y - x = -1 \implies x = y + 1 \] Now substituting \(x = y + 1\) into equation (3): \[ y - (y + 1) = -1 \implies -1 = -1 \quad \text{(which is true)} \] ### Step 6: Find values of \(x\), \(y\), and \(z\) Now we can express everything in terms of \(y\): 1. \(z = y\) 2. \(x = y + 1\) ### Step 7: Use the dot product condition Using the dot product condition \(\vec{a} \cdot \vec{b} = 3\): \[ (1)(x) + (1)(y) + (1)(z) = 3 \] Substituting \(x\) and \(z\): \[ (y + 1) + y + y = 3 \implies 3y + 1 = 3 \implies 3y = 2 \implies y = \frac{2}{3} \] Thus: \[ z = \frac{2}{3}, \quad x = \frac{2}{3} + 1 = \frac{5}{3} \] ### Step 8: Write vector \(\vec{b}\) Now we have: \[ \vec{b} = \frac{5}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{2}{3} \hat{k} \] ### Step 9: Calculate the modulus of \(\vec{b}\) The modulus of \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{\left(\frac{5}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2} \] Calculating this: \[ = \sqrt{\frac{25}{9} + \frac{4}{9} + \frac{4}{9}} = \sqrt{\frac{33}{9}} = \frac{\sqrt{33}}{3} \] ### Final Answer Thus, the modulus of \(\vec{b}\) is: \[ |\vec{b}| = \frac{\sqrt{33}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

Let veca =hatj-hatk and vecc =hati-hatj-hatk . Then the vector b satisfying veca xvecb+vecc =0 and veca.vecb = 3, is

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

If veca=2hati + hatj + hatk , vecb=hati + 2hatj + 2hatk then [veca vecb veci] hati + [veca vecb vecj] hatj + [veca vecb hatk] k is equal to

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vec...

    Text Solution

    |

  2. If the position vectors of the vertices A,B and C of a triangleABC are...

    Text Solution

    |

  3. Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be ...

    Text Solution

    |

  4. Let veca=2hati+hatj-2hatk and vecb=hati+hatj. Let vecc be a vector suc...

    Text Solution

    |

  5. The area (in sq units) of the parallelogram whose diagonals are along ...

    Text Solution

    |

  6. If the vector vecb = 3hati + 4hatk is written as the sum of a vector v...

    Text Solution

    |

  7. let veca, vecb and vecc be three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  8. In a triangle ABC , right angled at the vertex A , if the position vec...

    Text Solution

    |

  9. Let ABC be a triangle whose circumcenter is at P, if the positions vec...

    Text Solution

    |

  10. Let veca, vecb and vecc be non-zero vectors such that (veca xx vecb) x...

    Text Solution

    |

  11. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  12. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  13. If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2,...

    Text Solution

    |

  14. If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are t...

    Text Solution

    |

  15. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  16. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  17. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  18. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  19. If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  20. If veca, vecb and vecc are three non-zero vectors, no two of which are...

    Text Solution

    |