Home
Class 12
MATHS
If the vector vecb = 3hati + 4hatk is wr...

If the vector `vecb = 3hati + 4hatk` is written as the sum of a vector `vecb_(1)` parallel to `veca = hati + hatj` and a vector `vecb_(2)`, perpendicular to `veca` then `vecb_(1) xx vecb_(2)` is equal to:

A

`3hati - 3hatj + 9hatk`

B

`-3hati + 3hatj + 9hatk`

C

`-6hati + 6hatj -9/2 hatk`

D

`6hati - 6hatj + 9/2 hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \(\vec{b} = 3\hat{i} + 4\hat{k}\) as the sum of two vectors: \(\vec{b_1}\), which is parallel to \(\vec{a} = \hat{i} + \hat{j}\), and \(\vec{b_2}\), which is perpendicular to \(\vec{a}\). We then need to find the cross product \(\vec{b_1} \times \vec{b_2}\). ### Step 1: Express \(\vec{b_1}\) and \(\vec{b_2}\) Since \(\vec{b_1}\) is parallel to \(\vec{a}\), we can write: \[ \vec{b_1} = k(\hat{i} + \hat{j}) = k\hat{i} + k\hat{j} \] for some scalar \(k\). ### Step 2: Express \(\vec{b_2}\) Since \(\vec{b_2}\) is perpendicular to \(\vec{a}\), we can express \(\vec{b_2}\) as: \[ \vec{b_2} = p\hat{i} + q\hat{j} + r\hat{k} \] where \(p\), \(q\), and \(r\) are scalars. ### Step 3: Set up the equation We know that: \[ \vec{b} = \vec{b_1} + \vec{b_2} \] Substituting the expressions for \(\vec{b_1}\) and \(\vec{b_2}\): \[ 3\hat{i} + 4\hat{k} = (k\hat{i} + k\hat{j}) + (p\hat{i} + q\hat{j} + r\hat{k}) \] ### Step 4: Combine like terms Combining the terms gives: \[ 3\hat{i} + 4\hat{k} = (k + p)\hat{i} + (k + q)\hat{j} + r\hat{k} \] ### Step 5: Set up the system of equations From the above equation, we can set up the following system: 1. \(k + p = 3\) (coefficient of \(\hat{i}\)) 2. \(k + q = 0\) (coefficient of \(\hat{j}\)) 3. \(r = 4\) (coefficient of \(\hat{k}\)) ### Step 6: Solve for \(k\), \(p\), \(q\), and \(r\) From equation 3, we have: \[ r = 4 \] From equation 2, we can express \(q\) in terms of \(k\): \[ q = -k \] Substituting \(q\) into equation 1: \[ k + p = 3 \implies p = 3 - k \] ### Step 7: Substitute values Now we have: - \(p = 3 - k\) - \(q = -k\) - \(r = 4\) ### Step 8: Find \(\vec{b_1}\) and \(\vec{b_2}\) Substituting these into the expressions for \(\vec{b_1}\) and \(\vec{b_2}\): \[ \vec{b_1} = k\hat{i} + k\hat{j} \] \[ \vec{b_2} = (3 - k)\hat{i} - k\hat{j} + 4\hat{k} \] ### Step 9: Calculate the cross product \(\vec{b_1} \times \vec{b_2}\) Now we can calculate the cross product: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ k & k & 0 \\ 3 - k & -k & 4 \end{vmatrix} \] ### Step 10: Evaluate the determinant Calculating the determinant: \[ \vec{b_1} \times \vec{b_2} = \hat{i} \begin{vmatrix} k & 0 \\ -k & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} k & 0 \\ 3 - k & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} k & k \\ 3 - k & -k \end{vmatrix} \] Calculating each of these: 1. For \(\hat{i}\): \[ k \cdot 4 - 0 \cdot (-k) = 4k \] 2. For \(-\hat{j}\): \[ k \cdot 4 - 0 \cdot (3 - k) = 4k \] 3. For \(\hat{k}\): \[ k \cdot (-k) - k \cdot (3 - k) = -k^2 - 3k + k^2 = -3k \] Putting it all together: \[ \vec{b_1} \times \vec{b_2} = 4k\hat{i} - 4k\hat{j} - 3k\hat{k} \] ### Final Result Thus, the final expression for \(\vec{b_1} \times \vec{b_2}\) is: \[ \vec{b_1} \times \vec{b_2} = 4k\hat{i} - 4k\hat{j} - 3k\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If vecb ne 0 , then every vector veca can be written in a unique manner as the sum of a vector veca_(p) parallel to vecb and a vector veca_(q) perpendicular to vecb . If veca is parallel to vecb then veca_(q) =0 and veca_(q)=veca . The vector veca_(p) is called the projection of veca on vecb and is denoted by proj vecb(veca) . Since proj vecb(veca) is parallel to vecb , it is a scalar multiple of the vector in the direction of vecb i.e., proj vecb(veca)=lambdavecUvecb" " (vecUvecb=(vecb)/(|vecb|)) The scalar lambda is called the componennt of veca in the direction of vecb and is denoted by comp vecb(veca) . In fact proj vecb(veca)=(veca.vecUvecb)vecUvecb and comp vecb(veca)=veca.vecUvecb . If veca=-2hati+hatj+hatk and vecb=4hati-3hatj+hatk then proj vecb(veca) is

If vecb ne 0 , then every vector veca can be written in a unique manner as the sum of a vector veca_(p) parallel to vecb and a vector veca_(q) perpendicular to vecb . If veca is parallel to vecb then veca_(q) =0 and veca_(q)=veca . The vector veca_(p) is called the projection of veca on vecb and is denoted by proj vecb(veca) . Since proj vecb(veca) is parallel to vecb , it is a scalar multiple of the vector in the direction of vecb i.e., proj vecb(veca)=lambdavecUvecb" " (vecUvecb=(vecb)/(|vecb|)) The scalar lambda is called the componennt of veca in the direction of vecb and is denoted by comp vecb(veca) . In fact proj vecb(veca)=(veca.vecUvecb)vecUvecb and comp vecb(veca)=veca.vecUvecb . If veca=-2hatj+hatj+hatk and vecb=4hati-3hatj+hatk then proj vecb(veca) is

Express the vector veca=(5hati-2hatj+5hatk) as sum of two vectors such that one is paralle to the vector vecb=(3hati+hatk) and the other is perpendicular to vecb .

If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

The vector vecB= 5hati+2hatj-Shatk is perpendicular to the vector vecA= 3hati+hatj+2hatk if S =

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

IF vecA = (2 hati + hatj) and vecB = hati - hatj + 5 hatk find (i) vecA xx vecB (ii ) angle between vecA and vecB (iii ) unit vector perpendicular to vecA and vecB .

If veca=4hati+6hatj and vecb=3hati+4hatk find the vector component of veca along vecb .

If veca=4hati+6hatj and vecb=3hati+4hatk find the vector component of veca alond vecb .

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca=2hati+hatj-2hatk and vecb=hati+hatj. Let vecc be a vector suc...

    Text Solution

    |

  2. The area (in sq units) of the parallelogram whose diagonals are along ...

    Text Solution

    |

  3. If the vector vecb = 3hati + 4hatk is written as the sum of a vector v...

    Text Solution

    |

  4. let veca, vecb and vecc be three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  5. In a triangle ABC , right angled at the vertex A , if the position vec...

    Text Solution

    |

  6. Let ABC be a triangle whose circumcenter is at P, if the positions vec...

    Text Solution

    |

  7. Let veca, vecb and vecc be non-zero vectors such that (veca xx vecb) x...

    Text Solution

    |

  8. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  9. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  10. If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2,...

    Text Solution

    |

  11. If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are t...

    Text Solution

    |

  12. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  13. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  14. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  15. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  16. If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  17. If veca, vecb and vecc are three non-zero vectors, no two of which are...

    Text Solution

    |

  18. Let a=hat(j)-hat(k) and b=hat(i)-hat(j)-hat(k). Then, the vector v sat...

    Text Solution

    |

  19. If the vectors a=hat(i)-hat(j)+2hat(k), b=2hat(i)+4hat(j)+hat(k) and c...

    Text Solution

    |

  20. If u, v and w are non-coplanar vectors and p, q are real numbers, then...

    Text Solution

    |