Home
Class 12
MATHS
let veca, vecb and vecc be three unit ve...

let `veca, vecb` and `vecc` be three unit vectors such that `veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc)`. If `vecb` is not parallel to `vecc`, then the angle between `veca` and `vecb` is:

A

`(pi)/4`

B

`pi/3`

C

`(2pi)/3`

D

`(5pi)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The equation provided is: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \frac{\sqrt{3}}{2} (\vec{b} + \vec{c}) \] ### Step 1: Simplify the Cross Product Using the vector triple product identity, we can rewrite \(\vec{a} \times (\vec{b} \times \vec{c})\) as follows: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 2: Set Up the Equation Now, substituting this into the original equation, we have: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \frac{\sqrt{3}}{2} (\vec{b} + \vec{c}) \] ### Step 3: Compare Coefficients To compare coefficients of \(\vec{b}\) and \(\vec{c}\), we can equate the coefficients from both sides: 1. Coefficient of \(\vec{b}\): \[ \vec{a} \cdot \vec{c} = \frac{\sqrt{3}}{2} \] 2. Coefficient of \(\vec{c}\): \[ -(\vec{a} \cdot \vec{b}) = \frac{\sqrt{3}}{2} \] From the second equation, we can express \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = -\frac{\sqrt{3}}{2} \] ### Step 4: Find the Angle Between \(\vec{a}\) and \(\vec{b}\) Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we can relate the dot product to the angle \(\theta\) between them: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) = 1 \cdot 1 \cdot \cos(\theta) = \cos(\theta) \] Thus, we have: \[ \cos(\theta) = -\frac{\sqrt{3}}{2} \] ### Step 5: Determine the Angle \(\theta\) The angle \(\theta\) that satisfies \(\cos(\theta) = -\frac{\sqrt{3}}{2}\) corresponds to: \[ \theta = \frac{5\pi}{6} \text{ or } \theta = \frac{7\pi}{6} \] Since the angle between two vectors is typically taken to be between \(0\) and \(\pi\), we choose: \[ \theta = \frac{5\pi}{6} \] ### Final Answer Thus, the angle between \(\vec{a}\) and \(\vec{b}\) is: \[ \boxed{\frac{5\pi}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

If veca,vecb are two unit vectors such that veca+(veca xx vecb)=vecc , where |vecc|=2 , then value of [vecavecbvecc] is

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. The area (in sq units) of the parallelogram whose diagonals are along ...

    Text Solution

    |

  2. If the vector vecb = 3hati + 4hatk is written as the sum of a vector v...

    Text Solution

    |

  3. let veca, vecb and vecc be three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  4. In a triangle ABC , right angled at the vertex A , if the position vec...

    Text Solution

    |

  5. Let ABC be a triangle whose circumcenter is at P, if the positions vec...

    Text Solution

    |

  6. Let veca, vecb and vecc be non-zero vectors such that (veca xx vecb) x...

    Text Solution

    |

  7. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  8. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  9. If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2,...

    Text Solution

    |

  10. If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are t...

    Text Solution

    |

  11. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  12. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  13. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  14. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  15. If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  16. If veca, vecb and vecc are three non-zero vectors, no two of which are...

    Text Solution

    |

  17. Let a=hat(j)-hat(k) and b=hat(i)-hat(j)-hat(k). Then, the vector v sat...

    Text Solution

    |

  18. If the vectors a=hat(i)-hat(j)+2hat(k), b=2hat(i)+4hat(j)+hat(k) and c...

    Text Solution

    |

  19. If u, v and w are non-coplanar vectors and p, q are real numbers, then...

    Text Solution

    |

  20. The vectors a=alphahat(i)+2hat(j)+betahat(k) lies in the plane of the ...

    Text Solution

    |