Home
Class 12
MATHS
Let ABC be a triangle whose circumcenter...

Let ABC be a triangle whose circumcenter is at P, if the positions vectors of A,B,C and P are `veca,vecb,vecc` and `(veca + vecb+vecc)/4` respectively, then the positions vector of the orthocenter of this triangle, is:

A

`-(veca + vecb + vecc)/2`

B

`veca + vecb + vecc`

C

`(veca + vecb + vecc)/2`

D

`vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector of the orthocenter \( O \) of triangle \( ABC \) whose circumcenter is at point \( P \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Position Vectors**: - Let the position vectors of points \( A \), \( B \), and \( C \) be denoted as \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) respectively. - The position vector of the circumcenter \( P \) is given by: \[ \vec{p} = \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] 2. **Determine the Position Vector of the Centroid**: - The centroid \( G \) of triangle \( ABC \) is given by: \[ \vec{g} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} \] 3. **Use the Relationship Between Centroid, Orthocenter, and Circumcenter**: - It is known that the centroid \( G \) divides the line segment joining the orthocenter \( O \) and the circumcenter \( P \) in the ratio \( 2:1 \). This can be expressed as: \[ \vec{g} = \frac{2\vec{o} + \vec{p}}{3} \] 4. **Substitute the Value of \( \vec{p} \)**: - Substitute \( \vec{p} \) into the equation: \[ \vec{g} = \frac{2\vec{o} + \frac{\vec{a} + \vec{b} + \vec{c}}{4}}{3} \] 5. **Multiply Both Sides by 3 to Eliminate the Denominator**: - This gives: \[ 3\vec{g} = 2\vec{o} + \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] 6. **Substitute the Value of \( \vec{g} \)**: - Substitute \( \vec{g} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} \): \[ 3 \left(\frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) = 2\vec{o} + \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] - Simplifying this gives: \[ \vec{a} + \vec{b} + \vec{c} = 2\vec{o} + \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] 7. **Isolate \( 2\vec{o} \)**: - Rearranging the equation: \[ 2\vec{o} = \vec{a} + \vec{b} + \vec{c} - \frac{\vec{a} + \vec{b} + \vec{c}}{4} \] - To combine the terms, find a common denominator: \[ 2\vec{o} = \frac{4(\vec{a} + \vec{b} + \vec{c}) - (\vec{a} + \vec{b} + \vec{c})}{4} \] \[ 2\vec{o} = \frac{3(\vec{a} + \vec{b} + \vec{c})}{4} \] 8. **Solve for \( \vec{o} \)**: - Divide both sides by 2: \[ \vec{o} = \frac{3(\vec{a} + \vec{b} + \vec{c})}{8} \] 9. **Final Expression for the Orthocenter**: - Therefore, the position vector of the orthocenter \( O \) is: \[ \vec{o} = \frac{\vec{a} + \vec{b} + \vec{c}}{2} \] ### Final Answer: The position vector of the orthocenter \( O \) is: \[ \vec{o} = \frac{\vec{a} + \vec{b} + \vec{c}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb, vecc are the position vectors of the vertices. A,B,C of a triangle ABC. Then the area of triangle ABC is

If veca, vecb and vecc are position vectors of A,B, and C respectively of DeltaABC and if|veca-vecb|=4,|vecb-vec(c)|=2, |vecc-veca|=3 , then the distance between the centroid and incenter of triangleABC is

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

Let A,B,C be vertices of a triangle ABC in which B is taken as origin of reference and position vectors of A and C are veca and vecc respectively. A line AR parallel to BC is drawn from A PR (P is the mid point of AB) meets AC and Q and area of triangle ACR is 2 times area of triangle ABC Position vector of R in terms veca and vecc is (A) veca+2vecc (B) veca+3vecc (C) veca+vecc (D) veca+4vecc

Let A,B,C be vertices of a triangle ABC in which B is taken as origin of reference and position vectors of A and C are veca and vecc respectively. A line AR parallel to BC is drawn from A PR (P is the mid point of AB) meets AC and Q and area of triangle ACR is 2 times area of triangle ABC Positon vector of Q for position vector of R in (1) is (A) (2veca+3vecc)/5 (B) (3veca+2vecc)/5 (C) (veca+2vecc)/5 (D) none of these

veca,vecb,vecc are the position vectors of vertices A, B, C respectively of a paralleloram, ABCD, ifnd the position vector of D.

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Show that the three points whose position vectors are veca-2vecb+3vecc, 2veca+3vecb-4vecc, -7vecb+10vecc are collinear

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. let veca, vecb and vecc be three unit vectors such that veca xx (vecb ...

    Text Solution

    |

  2. In a triangle ABC , right angled at the vertex A , if the position vec...

    Text Solution

    |

  3. Let ABC be a triangle whose circumcenter is at P, if the positions vec...

    Text Solution

    |

  4. Let veca, vecb and vecc be non-zero vectors such that (veca xx vecb) x...

    Text Solution

    |

  5. Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 if vecc is a vector suc...

    Text Solution

    |

  6. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  7. If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2,...

    Text Solution

    |

  8. If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are t...

    Text Solution

    |

  9. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  10. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  11. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  12. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  13. If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  14. If veca, vecb and vecc are three non-zero vectors, no two of which are...

    Text Solution

    |

  15. Let a=hat(j)-hat(k) and b=hat(i)-hat(j)-hat(k). Then, the vector v sat...

    Text Solution

    |

  16. If the vectors a=hat(i)-hat(j)+2hat(k), b=2hat(i)+4hat(j)+hat(k) and c...

    Text Solution

    |

  17. If u, v and w are non-coplanar vectors and p, q are real numbers, then...

    Text Solution

    |

  18. The vectors a=alphahat(i)+2hat(j)+betahat(k) lies in the plane of the ...

    Text Solution

    |

  19. The non-zero vectors veca, vecb and vecc are related by veca=8vecb and...

    Text Solution

    |

  20. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |