Home
Class 12
MATHS
If the vectors vec(AB)=3hati+4hatk and v...

If the vectors `vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk` are the sides of a triangle ABC, then the length of the median through A is (A) `sqrt(33)` (B) `sqrt(45)` (C) `sqrt(18)` (D) `sqrt(720`

A

`sqrt(18)`

B

`sqrt(72)`

C

`sqrt(33)`

D

`sqrt(45)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the median through point A in triangle ABC, we will follow these steps: ### Step 1: Identify the vectors We are given: - \(\vec{AB} = 3\hat{i} + 4\hat{k}\) - \(\vec{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}\) ### Step 2: Find the coordinates of points B and C Assuming point A is at the origin (0, 0, 0): - Point B can be represented as \(B(3, 0, 4)\) - Point C can be represented as \(C(5, -2, 4)\) ### Step 3: Find the midpoint D of segment BC The coordinates of the midpoint D can be calculated using the midpoint formula: \[ D = \left(\frac{x_B + x_C}{2}, \frac{y_B + y_C}{2}, \frac{z_B + z_C}{2}\right) \] Substituting the coordinates of B and C: \[ D = \left(\frac{3 + 5}{2}, \frac{0 - 2}{2}, \frac{4 + 4}{2}\right) = \left(\frac{8}{2}, \frac{-2}{2}, \frac{8}{2}\right) = (4, -1, 4) \] ### Step 4: Find the vector \(\vec{AD}\) The vector \(\vec{AD}\) can be calculated as: \[ \vec{AD} = D - A = (4, -1, 4) - (0, 0, 0) = (4, -1, 4) \] Thus, \(\vec{AD} = 4\hat{i} - 1\hat{j} + 4\hat{k}\). ### Step 5: Calculate the magnitude of \(\vec{AD}\) The magnitude of the vector \(\vec{AD}\) is given by: \[ |\vec{AD}| = \sqrt{(4)^2 + (-1)^2 + (4)^2} = \sqrt{16 + 1 + 16} = \sqrt{33} \] ### Conclusion The length of the median through point A is \(\sqrt{33}\).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If the vectors vec(PQ)=-3hati+4hatj+4hatk and vec(PR)=5hati-2hatj+4hatk are the sides of a triangle PQR, then the length o the median through P is (A) sqrt(14) (B) sqrt(15) (C) sqrt(17) (D) sqrt(18)

The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides of a triangle ABC. The length of the median through A is (A) sqrt(18) (B) sqrt(72) (C) sqrt(33) (D) sqrt(288)

veca=hati-hatj+hatk and vecb=2hati+4hati+3hatk are one of the sides and medians respectively of a triangle through the same vertex, then area of the triangle is (A) 1/2 sqrt(83) (B) sqrt(83) (C) 1/2 sqrt(85) (D) sqrt(86)

Let vec(OA)=hati+3hatj-2hatk and vec(OB)=3hati+hatj-2hatk. Then vector vec(OC) biecting the angle AOB and C being a point on the line AB is

If the position vectors of A and B respectively hati+3hatj-7hatk and 5 hati-2hatj+4hatk , then find AB

If the position vectors of P and Q are (hati+3hatj-7hatk) and (5hati-2hatj+4hatk) , then |PQ| is

If vec(OA) =2hati+3hatj-4hatk and vec(OB) =hatj+hatk are two vectors through the origin O, find the projection of vec(OA) and vec(OB)

If vec(OA) =2hati+3hatj-4hatk and vec(OB) =hatj+hatk are two vectors through the origin O, find the projection of vec(OB) on vec(OA) .

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

Two vectors vecalpha=3hati+4hatj and vecbeta=5hati+2hatj-14hatk have the same initial point then their angulr bisector having magnitude 7/3 be (A) 7/(3sqrt(6))(2hati+hatj-hatk) (B) 7/(3sqrt(3))(\hati+hatj-hatk) (C) 7/(3sqrt(3))(hati-hatj+hatk) (D) 7/(3sqrt(3))(hati-hatj-hatk)

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Given a parallelogram ABCD. If |AB|=a, |AD|=b, |AC|=c, then DB*AB has ...

    Text Solution

    |

  2. If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2,...

    Text Solution

    |

  3. If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are t...

    Text Solution

    |

  4. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  5. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  6. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  7. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  8. If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  9. If veca, vecb and vecc are three non-zero vectors, no two of which are...

    Text Solution

    |

  10. Let a=hat(j)-hat(k) and b=hat(i)-hat(j)-hat(k). Then, the vector v sat...

    Text Solution

    |

  11. If the vectors a=hat(i)-hat(j)+2hat(k), b=2hat(i)+4hat(j)+hat(k) and c...

    Text Solution

    |

  12. If u, v and w are non-coplanar vectors and p, q are real numbers, then...

    Text Solution

    |

  13. The vectors a=alphahat(i)+2hat(j)+betahat(k) lies in the plane of the ...

    Text Solution

    |

  14. The non-zero vectors veca, vecb and vecc are related by veca=8vecb and...

    Text Solution

    |

  15. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  16. Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj...

    Text Solution

    |

  17. If (veca xx vecb)xx vec c=veca xx (vecb xx vec c), where veca, vecb a...

    Text Solution

    |

  18. The value of a, for which the points A, B, C with position vectors 2ha...

    Text Solution

    |

  19. If C is the middle point of AB and P is any point outside AB, then

    Text Solution

    |

  20. The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+l...

    Text Solution

    |