Home
Class 12
MATHS
The vectors veca and vecb are not perpen...

The vectors `veca and vecb` are not perpendicular and `vecac and vecd` are two vectors satisfying : `vecbxxvecc=vecbxxvecd and veca.vecd=0.` Then the `vecd` is equal to (A) `vecc+(veca.vecc)/(veca.vecb))vecb` (B) `vecb+(vecb.vecc)/(veca.vecb))vecc` (C) `vecc-(veca.vecc)/(veca.vecb))vecb` (D) `vecb-(vecb.vecc)/(veca.vecb))vecc`

A

`1/2(3a^(2) + b^(2)-c^(2))`

B

`vecb.((vecb.vecc)/(veca.vecb))vecc`

C

`vecc = ((veca.vecc)/(veca.vecb))vecb`

D

`vecb - (vecb.vecc)/(veca.vecb)vecc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given conditions and apply vector identities accordingly. ### Step 1: Understand the Given Conditions We have two vectors \( \vec{a} \) and \( \vec{b} \) that are not perpendicular. We also have two vectors \( \vec{c} \) and \( \vec{d} \) such that: 1. \( \vec{b} \times \vec{c} = \vec{b} \times \vec{d} \) 2. \( \vec{a} \cdot \vec{d} = 0 \) ### Step 2: Analyze the Cross Product Condition From the equation \( \vec{b} \times \vec{c} = \vec{b} \times \vec{d} \), we can use the property of cross products. This implies that the vector \( \vec{b} \) is perpendicular to the vector \( \vec{c} - \vec{d} \): \[ \vec{b} \times (\vec{c} - \vec{d}) = \vec{0} \] This means \( \vec{c} - \vec{d} \) is parallel to \( \vec{b} \). Hence, we can express \( \vec{d} \) in terms of \( \vec{c} \): \[ \vec{d} = \vec{c} + k \vec{b} \] for some scalar \( k \). ### Step 3: Use the Dot Product Condition Next, we utilize the condition \( \vec{a} \cdot \vec{d} = 0 \): \[ \vec{a} \cdot (\vec{c} + k \vec{b}) = 0 \] This expands to: \[ \vec{a} \cdot \vec{c} + k (\vec{a} \cdot \vec{b}) = 0 \] From this, we can solve for \( k \): \[ k = -\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \] ### Step 4: Substitute Back to Find \( \vec{d} \) Now, substituting \( k \) back into the equation for \( \vec{d} \): \[ \vec{d} = \vec{c} - \frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{b} \] ### Step 5: Final Expression for \( \vec{d} \) Thus, we have: \[ \vec{d} = \vec{c} - \frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{b} \] This matches with option (C): \[ \vec{d} = \vec{c} - \left( \frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \right) \vec{b} \] ### Conclusion The correct answer is option (C). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then lambda is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  2. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  3. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  4. If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  5. If veca, vecb and vecc are three non-zero vectors, no two of which are...

    Text Solution

    |

  6. Let a=hat(j)-hat(k) and b=hat(i)-hat(j)-hat(k). Then, the vector v sat...

    Text Solution

    |

  7. If the vectors a=hat(i)-hat(j)+2hat(k), b=2hat(i)+4hat(j)+hat(k) and c...

    Text Solution

    |

  8. If u, v and w are non-coplanar vectors and p, q are real numbers, then...

    Text Solution

    |

  9. The vectors a=alphahat(i)+2hat(j)+betahat(k) lies in the plane of the ...

    Text Solution

    |

  10. The non-zero vectors veca, vecb and vecc are related by veca=8vecb and...

    Text Solution

    |

  11. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  12. Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj...

    Text Solution

    |

  13. If (veca xx vecb)xx vec c=veca xx (vecb xx vec c), where veca, vecb a...

    Text Solution

    |

  14. The value of a, for which the points A, B, C with position vectors 2ha...

    Text Solution

    |

  15. If C is the middle point of AB and P is any point outside AB, then

    Text Solution

    |

  16. The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+l...

    Text Solution

    |

  17. If the vectors veca, vecb and vecc form the sides, BC , CA and AB, res...

    Text Solution

    |

  18. Let veca=veci-veck,vecb=xveci+vecj+(1-x)veck and vecc=yveci+xvecj+(1+x...

    Text Solution

    |

  19. Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj...

    Text Solution

    |

  20. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |