Home
Class 12
MATHS
If the vectors phati+hatj+hatk, hati+qha...

If the vectors `phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!=q!+r!=1)` are coplanar then the value of `pqr-(p+q+r)` is (A) 0 (B) -1 (C) -2 (D) 2

A

`-2`

B

2

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( pqr - (p + q + r) \) given that the vectors \( \mathbf{a} = p\hat{i} + \hat{j} + \hat{k} \), \( \mathbf{b} = \hat{i} + q\hat{j} + \hat{k} \), and \( \mathbf{c} = \hat{i} + \hat{j} + r\hat{k} \) are coplanar, we can follow these steps: ### Step 1: Set up the vectors Let: - \( \mathbf{a} = p\hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{b} = \hat{i} + q\hat{j} + \hat{k} \) - \( \mathbf{c} = \hat{i} + \hat{j} + r\hat{k} \) ### Step 2: Use the condition for coplanarity The vectors are coplanar if the scalar triple product is zero: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \] ### Step 3: Compute the cross product \( \mathbf{b} \times \mathbf{c} \) The cross product \( \mathbf{b} \times \mathbf{c} \) is given by the determinant: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & q & 1 \\ 1 & 1 & r \end{vmatrix} \] ### Step 4: Calculate the determinant Calculating the determinant: \[ \mathbf{b} \times \mathbf{c} = \hat{i} \begin{vmatrix} q & 1 \\ 1 & r \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 1 & r \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & q \\ 1 & 1 \end{vmatrix} \] Calculating each 2x2 determinant: 1. \( \begin{vmatrix} q & 1 \\ 1 & r \end{vmatrix} = qr - 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & r \end{vmatrix} = r - 1 \) 3. \( \begin{vmatrix} 1 & q \\ 1 & 1 \end{vmatrix} = 1 - q \) Thus, \[ \mathbf{b} \times \mathbf{c} = (qr - 1)\hat{i} - (r - 1)\hat{j} + (1 - q)\hat{k} \] ### Step 5: Compute the dot product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \) Now we compute: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (p\hat{i} + \hat{j} + \hat{k}) \cdot ((qr - 1)\hat{i} - (r - 1)\hat{j} + (1 - q)\hat{k}) \] This results in: \[ p(qr - 1) + 1(- (r - 1)) + 1(1 - q) \] Simplifying gives: \[ p(qr - 1) - (r - 1) + (1 - q) = pqr - p - r + 1 + 1 - q \] Setting this equal to zero for coplanarity: \[ pqr - p - q - r + 2 = 0 \] ### Step 6: Rearranging the equation Rearranging gives: \[ pqr - (p + q + r) = -2 \] ### Final Answer Thus, the value of \( pqr - (p + q + r) \) is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If the vectots phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!=q!=r!=1) are coplanar, then the value of pqr-(p+q+r) , is

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

Vectors 5hati+yhatj+hatk,2hati+2hatj-2hatk and -hati+2hatj+2hatk are coplaner then find the value of y.

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1, b!=1,c!=1) are coplanar then the value of 1/(1-a)+1/(1-b)+1/(1-c) is (A) 0 (B) 1 (C) -1 (D) 2

If the vectors 4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk are coplanar, then m is equal to

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

The vectors 3hati - hatj +2hatk, 2hati+hatj+3hatk and hati+lambdahatj-hatk are coplanar if value of lambda is (A) -2 (B) 0 (C) 2 (D) any real number

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  2. The vectors veca and vecb are not perpendicular and vecac and vecd are...

    Text Solution

    |

  3. If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!...

    Text Solution

    |

  4. If veca, vecb and vecc are three non-zero vectors, no two of which are...

    Text Solution

    |

  5. Let a=hat(j)-hat(k) and b=hat(i)-hat(j)-hat(k). Then, the vector v sat...

    Text Solution

    |

  6. If the vectors a=hat(i)-hat(j)+2hat(k), b=2hat(i)+4hat(j)+hat(k) and c...

    Text Solution

    |

  7. If u, v and w are non-coplanar vectors and p, q are real numbers, then...

    Text Solution

    |

  8. The vectors a=alphahat(i)+2hat(j)+betahat(k) lies in the plane of the ...

    Text Solution

    |

  9. The non-zero vectors veca, vecb and vecc are related by veca=8vecb and...

    Text Solution

    |

  10. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  11. Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj...

    Text Solution

    |

  12. If (veca xx vecb)xx vec c=veca xx (vecb xx vec c), where veca, vecb a...

    Text Solution

    |

  13. The value of a, for which the points A, B, C with position vectors 2ha...

    Text Solution

    |

  14. If C is the middle point of AB and P is any point outside AB, then

    Text Solution

    |

  15. The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+l...

    Text Solution

    |

  16. If the vectors veca, vecb and vecc form the sides, BC , CA and AB, res...

    Text Solution

    |

  17. Let veca=veci-veck,vecb=xveci+vecj+(1-x)veck and vecc=yveci+xvecj+(1+x...

    Text Solution

    |

  18. Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj...

    Text Solution

    |

  19. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  20. The vector hati +xhatj+3hatk is rotated through an angle theta and is ...

    Text Solution

    |