Home
Class 12
MATHS
Let veca=hati+hatj+hatk, vecb=hati-hatj+...

Let `veca=hati+hatj+hatk, vecb=hati-hatj+hat2k` and `vecc=xhati+(x-2)hatj-hatk`. If the vector `vecc` lies in the plane of `veca` and `vecb` then `x` equals

A

0

B

1

C

`-4`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the vector \( \vec{c} \) lies in the plane formed by the vectors \( \vec{a} \) and \( \vec{b} \). This can be determined using the condition of coplanarity, which states that if three vectors are coplanar, their scalar triple product is zero. ### Step-by-Step Solution: 1. **Identify the Vectors**: - Given: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{c} = x\hat{i} + (x-2)\hat{j} - \hat{k} \] 2. **Set Up the Scalar Triple Product**: - The scalar triple product of vectors \( \vec{a}, \vec{b}, \vec{c} \) can be represented using the determinant: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ x & x-2 & -1 \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: - We will simplify the determinant step by step: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ x & x-2 & -1 \end{vmatrix} \] - Perform column operations: - Column 1: \( C_1 \leftarrow C_1 - C_2 \) - Column 3: \( C_3 \leftarrow C_3 - C_2 \) \[ \begin{vmatrix} 0 & 1 & 2 \\ 2 & -1 & 3 \\ x+2 & x-2 & 1-x \end{vmatrix} \] 4. **Expand the Determinant**: - Now we will expand the determinant: \[ = 0 \cdot \begin{vmatrix} -1 & 3 \\ x-2 & 1-x \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ x+2 & 1-x \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & -1 \\ x+2 & x-2 \end{vmatrix} \] - Calculate the 2x2 determinants: \[ = -1 \left( 2(1-x) - 3(x+2) \right) + 2 \left( 2(x-2) + 1(x+2) \right) \] - Simplifying gives: \[ = -1(2 - 2x - 3x - 6) + 2(2x - 4 + x + 2) \] \[ = -1(-5x - 4) + 2(3x - 2) \] \[ = 5x + 4 + 6x - 4 = 11x \] 5. **Set the Determinant to Zero**: - For coplanarity, set the determinant equal to zero: \[ 11x = 0 \] - Thus, solving for \( x \): \[ x = 0 \] ### Final Answer: The value of \( x \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk . If vecc lies in the plane of veca and vecb , then (1)/(x) is equal to

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. The non-zero vectors veca, vecb and vecc are related by veca=8vecb and...

    Text Solution

    |

  2. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  3. Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj...

    Text Solution

    |

  4. If (veca xx vecb)xx vec c=veca xx (vecb xx vec c), where veca, vecb a...

    Text Solution

    |

  5. The value of a, for which the points A, B, C with position vectors 2ha...

    Text Solution

    |

  6. If C is the middle point of AB and P is any point outside AB, then

    Text Solution

    |

  7. The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+l...

    Text Solution

    |

  8. If the vectors veca, vecb and vecc form the sides, BC , CA and AB, res...

    Text Solution

    |

  9. Let veca=veci-veck,vecb=xveci+vecj+(1-x)veck and vecc=yveci+xvecj+(1+x...

    Text Solution

    |

  10. Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj...

    Text Solution

    |

  11. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  12. The vector hati +xhatj+3hatk is rotated through an angle theta and is ...

    Text Solution

    |

  13. A particle acted upon by constant forces 4hati+hatj-3hatk and 3hati + ...

    Text Solution

    |

  14. If veca, vecb and vec are non-coplanar vectors and lamda is a real num...

    Text Solution

    |

  15. Given, two vectors are hati - hatj and hati + 2hatj, the unit vector c...

    Text Solution

    |

  16. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  17. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  18. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  19. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  20. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |