Home
Class 12
MATHS
Let a=hati + hatj + sqrt(2)hatk, b=b(1)h...

Let `a=hati + hatj + sqrt(2)hatk, b=b_(1)hati + b_(2)hatj + sqrt(2)hatk` and `vecc = 5hati + hatj +sqrt(2)hatk` be three vectors such that the projection vector of b on a is |a| . If `a+b` is perpendicular to c, then |b| is equal to:

A

6

B

4

C

`sqrt(22)`

D

`sqrt(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript. ### Step 1: Write down the given vectors We have three vectors: - \( \vec{a} = \hat{i} + \hat{j} + \sqrt{2} \hat{k} \) - \( \vec{b} = b_1 \hat{i} + b_2 \hat{j} + \sqrt{2} \hat{k} \) - \( \vec{c} = 5 \hat{i} + \hat{j} + \sqrt{2} \hat{k} \) ### Step 2: Find the magnitude of vector \( \vec{a} \) The magnitude of \( \vec{a} \) is calculated as follows: \[ |\vec{a}| = \sqrt{1^2 + 1^2 + (\sqrt{2})^2} = \sqrt{1 + 1 + 2} = \sqrt{4} = 2 \] ### Step 3: Use the projection condition The projection of \( \vec{b} \) on \( \vec{a} \) is given to be equal to \( |\vec{a}| \). The formula for the projection of \( \vec{b} \) on \( \vec{a} \) is: \[ \text{Projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} \] Setting this equal to \( |\vec{a}| \) gives us: \[ \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = |\vec{a}| \] This implies: \[ \vec{b} \cdot \vec{a} = |\vec{a}|^2 = 2^2 = 4 \] ### Step 4: Calculate \( \vec{b} \cdot \vec{a} \) Now we calculate \( \vec{b} \cdot \vec{a} \): \[ \vec{b} \cdot \vec{a} = (b_1 \hat{i} + b_2 \hat{j} + \sqrt{2} \hat{k}) \cdot (\hat{i} + \hat{j} + \sqrt{2} \hat{k}) = b_1 \cdot 1 + b_2 \cdot 1 + \sqrt{2} \cdot \sqrt{2} \] This simplifies to: \[ b_1 + b_2 + 2 = 4 \] Thus, we have: \[ b_1 + b_2 = 2 \quad \text{(Equation 1)} \] ### Step 5: Use the perpendicularity condition Next, we know that \( \vec{a} + \vec{b} \) is perpendicular to \( \vec{c} \). This means: \[ (\vec{a} + \vec{b}) \cdot \vec{c} = 0 \] Expanding this gives: \[ \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0 \] ### Step 6: Calculate \( \vec{a} \cdot \vec{c} \) Calculating \( \vec{a} \cdot \vec{c} \): \[ \vec{a} \cdot \vec{c} = (\hat{i} + \hat{j} + \sqrt{2} \hat{k}) \cdot (5 \hat{i} + \hat{j} + \sqrt{2} \hat{k}) = 5 + 1 + 2 = 8 \] ### Step 7: Substitute into the perpendicularity condition Substituting into the perpendicularity condition gives: \[ 8 + \vec{b} \cdot \vec{c} = 0 \implies \vec{b} \cdot \vec{c} = -8 \] ### Step 8: Calculate \( \vec{b} \cdot \vec{c} \) Calculating \( \vec{b} \cdot \vec{c} \): \[ \vec{b} \cdot \vec{c} = (b_1 \hat{i} + b_2 \hat{j} + \sqrt{2} \hat{k}) \cdot (5 \hat{i} + \hat{j} + \sqrt{2} \hat{k}) = 5b_1 + b_2 + 2 \] Setting this equal to -8 gives: \[ 5b_1 + b_2 + 2 = -8 \implies 5b_1 + b_2 = -10 \quad \text{(Equation 2)} \] ### Step 9: Solve the equations Now we have two equations: 1. \( b_1 + b_2 = 2 \) 2. \( 5b_1 + b_2 = -10 \) Subtracting Equation 1 from Equation 2: \[ (5b_1 + b_2) - (b_1 + b_2) = -10 - 2 \] This simplifies to: \[ 4b_1 = -12 \implies b_1 = -3 \] Substituting \( b_1 \) back into Equation 1: \[ -3 + b_2 = 2 \implies b_2 = 5 \] ### Step 10: Find the magnitude of \( \vec{b} \) Now we can write \( \vec{b} \): \[ \vec{b} = -3 \hat{i} + 5 \hat{j} + \sqrt{2} \hat{k} \] Calculating the magnitude: \[ |\vec{b}| = \sqrt{(-3)^2 + 5^2 + (\sqrt{2})^2} = \sqrt{9 + 25 + 2} = \sqrt{36} = 6 \] ### Final Answer Thus, the magnitude of vector \( \vec{b} \) is: \[ |\vec{b}| = 6 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,

Let a=2hati+hatj+hatk,b=hati+2hatj-hatk and c is a unit vector coplanar to them. If c is perpendicular to a, then c is equal to

let veca=hati_+hatj+sqrt2hatk vecb=b_1hati+b_2hatJ+sqrt2hatk vecc=5hati+hatj+sqrt2hatk & (veca+vecb) is perpendicular to vecc and projection vector of vecb on veca is veca then find |vecb| (a) 6 (b) sqrt(22) (c) sqrt(32) (d) 11

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If a=hati+4hatj+2sqrt(2)hatk and b=(hati+hatj)sqrt(2) then find component of a perpendicular to b

If a=hati+2hatj+2hatk and b=3hati+6hatj+2hatk , then find a vector in the direction of a and having magnitude as |b|.

Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors. If a vector perpendicular to both the a + b and a-b has the magnitude 12, then one such vector is:

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  3. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  4. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  5. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |

  6. Let A(3,0,-1), B(2,10,6) and C(1,2,1) be the vertices of a triangle an...

    Text Solution

    |

  7. If a unit vector vec a makes angle pi//3 with hat i ,pi//4 with hat...

    Text Solution

    |

  8. Let a=hati + hatj + sqrt(2)hatk, b=b(1)hati + b(2)hatj + sqrt(2)hatk a...

    Text Solution

    |

  9. Prove that the line x=ay+b, z=cy+d and x=a'y+b', z=dy+d' are perpendic...

    Text Solution

    |

  10. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |

  11. Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, ...

    Text Solution

    |

  12. If the length of the perpendicular from the point (beta, 0,beta) (beta...

    Text Solution

    |

  13. Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk. If vecbeta...

    Text Solution

    |

  14. Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk, for some real ...

    Text Solution

    |

  15. The sum of the distinct real values of mu, for which the vectors, mu h...

    Text Solution

    |

  16. If veca=hati+2hatj+4hatk, vecb=hati+lamdahatj+4hatk, vecc=2hati+4hatj+...

    Text Solution

    |

  17. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  18. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  19. Let alpha = (lambda-2) a + b and beta =(4lambda -2)a + 3b be two given...

    Text Solution

    |

  20. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |