Home
Class 12
MATHS
Let a=3hati + 2hatj + 2hatk and b= hati ...

Let `a=3hati + 2hatj + 2hatk` and `b= hati + 2hatj - 2hatk` be two vectors. If a vector perpendicular to both the `a + b` and `a-b` has the magnitude 12, then one such vector is:

A

`4(2hati + 2hatj + hatk)`

B

`4(2hati + 2hatj - hatk)`

C

`4(2hati - 2hatj - hatk)`

D

`4(-2hati -2hatj + hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript and elaborate on each step. ### Step 1: Define the vectors Given: - \( \mathbf{a} = 3\hat{i} + 2\hat{j} + 2\hat{k} \) - \( \mathbf{b} = \hat{i} + 2\hat{j} - 2\hat{k} \) ### Step 2: Calculate \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \) First, we find \( \mathbf{a} + \mathbf{b} \): \[ \mathbf{a} + \mathbf{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) + (\hat{i} + 2\hat{j} - 2\hat{k}) = (3 + 1)\hat{i} + (2 + 2)\hat{j} + (2 - 2)\hat{k} = 4\hat{i} + 4\hat{j} + 0\hat{k} \] Thus, \[ \mathbf{a} + \mathbf{b} = 4\hat{i} + 4\hat{j} \] Next, we calculate \( \mathbf{a} - \mathbf{b} \): \[ \mathbf{a} - \mathbf{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) - (\hat{i} + 2\hat{j} - 2\hat{k}) = (3 - 1)\hat{i} + (2 - 2)\hat{j} + (2 + 2)\hat{k} = 2\hat{i} + 0\hat{j} + 4\hat{k} \] Thus, \[ \mathbf{a} - \mathbf{b} = 2\hat{i} + 4\hat{k} \] ### Step 3: Find a vector perpendicular to both \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \) Let \( \mathbf{C} \) be the required vector. Since \( \mathbf{C} \) is perpendicular to both \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{a} - \mathbf{b} \), we can express \( \mathbf{C} \) as: \[ \mathbf{C} = \lambda ((\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b})) \] ### Step 4: Calculate the cross product Using the determinant method for the cross product: \[ \mathbf{C} = \lambda \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(4 \cdot 4 - 0 \cdot 0) - \hat{j}(4 \cdot 4 - 0 \cdot 2) + \hat{k}(4 \cdot 0 - 4 \cdot 2) \] \[ = \hat{i}(16) - \hat{j}(16) - \hat{k}(8) \] Thus, \[ \mathbf{C} = \lambda (16\hat{i} - 16\hat{j} - 8\hat{k}) \] ### Step 5: Simplify \( \mathbf{C} \) Factoring out 8: \[ \mathbf{C} = 8\lambda (2\hat{i} - 2\hat{j} - \hat{k}) \] ### Step 6: Set the magnitude of \( \mathbf{C} \) to 12 The magnitude of \( \mathbf{C} \) is given by: \[ |\mathbf{C}| = |8\lambda| \sqrt{(2^2) + (-2)^2 + (-1)^2} = |8\lambda| \sqrt{4 + 4 + 1} = |8\lambda| \sqrt{9} = |8\lambda| \cdot 3 \] Setting this equal to 12: \[ |8\lambda| \cdot 3 = 12 \] \[ |8\lambda| = 4 \quad \Rightarrow \quad |\lambda| = \frac{4}{8} = \frac{1}{2} \] ### Step 7: Substitute \( \lambda \) back into \( \mathbf{C} \) Assuming \( \lambda = \frac{1}{2} \): \[ \mathbf{C} = 8 \cdot \frac{1}{2} (2\hat{i} - 2\hat{j} - \hat{k}) = 4(2\hat{i} - 2\hat{j} - \hat{k}) = 8\hat{i} - 8\hat{j} - 4\hat{k} \] Thus, one such vector \( \mathbf{C} \) is: \[ \mathbf{C} = 8\hat{i} - 8\hat{j} - 4\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

Let a=2hati+hatj+hatk,b=hati+2hatj-hatk and c is a unit vector coplanar to them. If c is perpendicular to a, then c is equal to

If a=hati+hatj+hatk,b=hati+hatj-hatk , then vectors perpendicular to a and b is/are

If two vectors are A = 2hati + hatj - hatk and B = hatj - 4hatk. By calculation, prove AxxB isperpendicular to both A and B.

The number of vectors of units length perpendicular to both the vectors hati +2hatj - hatk and 2hati + 4hatj -2hatk is

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

If a=hati+2hatj+2hatk and b=3hati+6hatj+2hatk , then find a vector in the direction of a and having magnitude as |b|.

Prove that the vectors A=2hati-3hatj+hatk and B=hati+hatj + hatk are mutually perpendicular .

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  3. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  4. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  5. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |

  6. Let A(3,0,-1), B(2,10,6) and C(1,2,1) be the vertices of a triangle an...

    Text Solution

    |

  7. If a unit vector vec a makes angle pi//3 with hat i ,pi//4 with hat...

    Text Solution

    |

  8. Let a=hati + hatj + sqrt(2)hatk, b=b(1)hati + b(2)hatj + sqrt(2)hatk a...

    Text Solution

    |

  9. Prove that the line x=ay+b, z=cy+d and x=a'y+b', z=dy+d' are perpendic...

    Text Solution

    |

  10. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |

  11. Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, ...

    Text Solution

    |

  12. If the length of the perpendicular from the point (beta, 0,beta) (beta...

    Text Solution

    |

  13. Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk. If vecbeta...

    Text Solution

    |

  14. Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk, for some real ...

    Text Solution

    |

  15. The sum of the distinct real values of mu, for which the vectors, mu h...

    Text Solution

    |

  16. If veca=hati+2hatj+4hatk, vecb=hati+lamdahatj+4hatk, vecc=2hati+4hatj+...

    Text Solution

    |

  17. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  18. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  19. Let alpha = (lambda-2) a + b and beta =(4lambda -2)a + 3b be two given...

    Text Solution

    |

  20. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |