Home
Class 12
MATHS
Let alpha epsilon R and the three vector...

Let `alpha epsilon R` and the three vectors `veca=alpha hati+hatj+3hatk, vecb=2hati+hatj-alpha hatk` and `vecc=alpha hati-2hatj+3hatk`. Then the set `S={alpha: veca, vecb` and `vecc` are coplanar}:

A

Is singleton

B

Is empty

C

Contains exaclty two positive numbers

D

Contains exactlly two numbers only one of which is positive.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the set \( S \) such that the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are coplanar, we follow these steps: ### Step 1: Write down the vectors The vectors are given as: \[ \vec{a} = \alpha \hat{i} + \hat{j} + 3 \hat{k} \] \[ \vec{b} = 2 \hat{i} + \hat{j} - \alpha \hat{k} \] \[ \vec{c} = \alpha \hat{i} - 2 \hat{j} + 3 \hat{k} \] ### Step 2: Set up the condition for coplanarity The vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are coplanar if their scalar triple product is zero. The scalar triple product can be computed using the determinant of a matrix formed by the components of the vectors: \[ \begin{vmatrix} \alpha & 1 & 3 \\ 2 & 1 & -\alpha \\ \alpha & -2 & 3 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant We can compute the determinant: \[ \begin{vmatrix} \alpha & 1 & 3 \\ 2 & 1 & -\alpha \\ \alpha & -2 & 3 \end{vmatrix} \] Expanding this determinant: 1. The first row gives: \[ \alpha \begin{vmatrix} 1 & -\alpha \\ -2 & 3 \end{vmatrix} - 1 \begin{vmatrix} 2 & -\alpha \\ \alpha & 3 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ \alpha & -2 \end{vmatrix} \] Calculating each of the 2x2 determinants: - For \( \begin{vmatrix} 1 & -\alpha \\ -2 & 3 \end{vmatrix} = (1)(3) - (-2)(-\alpha) = 3 - 2\alpha \) - For \( \begin{vmatrix} 2 & -\alpha \\ \alpha & 3 \end{vmatrix} = (2)(3) - (-\alpha)(\alpha) = 6 + \alpha^2 \) - For \( \begin{vmatrix} 2 & 1 \\ \alpha & -2 \end{vmatrix} = (2)(-2) - (1)(\alpha) = -4 - \alpha \) Putting it all together: \[ \alpha(3 - 2\alpha) - (6 + \alpha^2) + 3(-4 - \alpha) = 0 \] This simplifies to: \[ 3\alpha - 2\alpha^2 - 6 - \alpha^2 - 12 - 3\alpha = 0 \] Combining like terms: \[ -3\alpha^2 - 18 = 0 \] This leads to: \[ 3\alpha^2 + 18 = 0 \] ### Step 4: Solve for \( \alpha \) Rearranging gives: \[ \alpha^2 = -6 \] Since \( \alpha^2 \) cannot be negative for real numbers, there are no real solutions for \( \alpha \). ### Conclusion Thus, the set \( S \) is empty, meaning there are no values of \( \alpha \) for which the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are coplanar. ### Final Answer \[ S = \emptyset \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Select CORRECT statement(s) for three vectors veca=-3hati+2hatj-hatk, vecb=hati-3hatj+5hatk and vecc=2hati+hatj-4hatk

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

Find the projection of vecb+vecc on veca where veca=hati+2hatj+hatk, vecb=hati+3hatj+hatk and vecc=hati+hatk .

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

Let veca =hatj-hatk and vecc =hati-hatj-hatk . Then the vector b satisfying veca xvecb+vecc =0 and veca.vecb = 3, is

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  3. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  4. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  5. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |

  6. Let A(3,0,-1), B(2,10,6) and C(1,2,1) be the vertices of a triangle an...

    Text Solution

    |

  7. If a unit vector vec a makes angle pi//3 with hat i ,pi//4 with hat...

    Text Solution

    |

  8. Let a=hati + hatj + sqrt(2)hatk, b=b(1)hati + b(2)hatj + sqrt(2)hatk a...

    Text Solution

    |

  9. Prove that the line x=ay+b, z=cy+d and x=a'y+b', z=dy+d' are perpendic...

    Text Solution

    |

  10. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |

  11. Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, ...

    Text Solution

    |

  12. If the length of the perpendicular from the point (beta, 0,beta) (beta...

    Text Solution

    |

  13. Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk. If vecbeta...

    Text Solution

    |

  14. Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk, for some real ...

    Text Solution

    |

  15. The sum of the distinct real values of mu, for which the vectors, mu h...

    Text Solution

    |

  16. If veca=hati+2hatj+4hatk, vecb=hati+lamdahatj+4hatk, vecc=2hati+4hatj+...

    Text Solution

    |

  17. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  18. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  19. Let alpha = (lambda-2) a + b and beta =(4lambda -2)a + 3b be two given...

    Text Solution

    |

  20. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |