Home
Class 12
MATHS
Let vecalpha = 3hati + hatj and beta= 2h...

Let `vecalpha = 3hati + hatj` and `beta= 2hati - hatj + 3hatk`. If `vecbeta = vecbeta_(1) - vecbeta_(2)`, where `vecbeta_(1)` is parallel to `vecalpha` and `vecbeta_(2)` is perpendicular to `vecalpha`, then `vecbeta_(1) xx vecbeta_(2)` is equal to:

A

`1/2(3hati - 9hatj + 5hatk)`

B

`1/2(-3hati+ 9hatj + 5hatk)`

C

`-3hati + 9hatj + 5hatk`

D

`3hati - 9hatj - 5hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the cross product of two vectors, \(\vec{\beta_1}\) and \(\vec{\beta_2}\), where \(\vec{\beta_1}\) is parallel to \(\vec{\alpha}\) and \(\vec{\beta_2}\) is perpendicular to \(\vec{\alpha}\). Let's go through the solution step by step. ### Step 1: Define the vectors Given: \[ \vec{\alpha} = 3\hat{i} + \hat{j} \] \[ \vec{\beta} = 2\hat{i} - \hat{j} + 3\hat{k} \] ### Step 2: Express \(\vec{\beta_1}\) in terms of \(\vec{\alpha}\) Since \(\vec{\beta_1}\) is parallel to \(\vec{\alpha}\), we can express it as: \[ \vec{\beta_1} = \lambda \vec{\alpha} = \lambda (3\hat{i} + \hat{j}) \] where \(\lambda\) is a scalar. ### Step 3: Express \(\vec{\beta_2}\) From the problem statement, we have: \[ \vec{\beta} = \vec{\beta_1} - \vec{\beta_2} \] This implies: \[ \vec{\beta_2} = \vec{\beta_1} - \vec{\beta} \] ### Step 4: Use the condition for perpendicularity Since \(\vec{\beta_2}\) is perpendicular to \(\vec{\alpha}\), we have: \[ \vec{\beta_2} \cdot \vec{\alpha} = 0 \] Substituting \(\vec{\beta_2}\): \[ (\vec{\beta_1} - \vec{\beta}) \cdot \vec{\alpha} = 0 \] ### Step 5: Substitute \(\vec{\beta_1}\) and \(\vec{\beta}\) Substituting \(\vec{\beta_1}\): \[ (\lambda (3\hat{i} + \hat{j}) - (2\hat{i} - \hat{j} + 3\hat{k})) \cdot (3\hat{i} + \hat{j}) = 0 \] This simplifies to: \[ (3\lambda - 2)\hat{i} + (\lambda + 1)\hat{j} - 3\hat{k} \cdot (3\hat{i} + \hat{j}) = 0 \] ### Step 6: Calculate the dot product Calculating the dot product: \[ (3\lambda - 2) \cdot 3 + (\lambda + 1) \cdot 1 + (-3) \cdot 0 = 0 \] This gives: \[ 9\lambda - 6 + \lambda + 1 = 0 \] \[ 10\lambda - 5 = 0 \] Thus, \[ \lambda = \frac{1}{2} \] ### Step 7: Find \(\vec{\beta_1}\) Substituting \(\lambda\) back into the equation for \(\vec{\beta_1}\): \[ \vec{\beta_1} = \frac{1}{2}(3\hat{i} + \hat{j}) = \frac{3}{2}\hat{i} + \frac{1}{2}\hat{j} \] ### Step 8: Find \(\vec{\beta_2}\) Now substituting \(\vec{\beta_1}\) into the equation for \(\vec{\beta_2}\): \[ \vec{\beta_2} = \left(\frac{3}{2}\hat{i} + \frac{1}{2}\hat{j}\right) - (2\hat{i} - \hat{j} + 3\hat{k}) \] Calculating this gives: \[ \vec{\beta_2} = \left(\frac{3}{2} - 2\right)\hat{i} + \left(\frac{1}{2} + 1\right)\hat{j} - 3\hat{k} \] \[ = -\frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k} \] ### Step 9: Calculate \(\vec{\beta_1} \times \vec{\beta_2}\) Now we need to find the cross product \(\vec{\beta_1} \times \vec{\beta_2}\): \[ \vec{\beta_1} \times \vec{\beta_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{3}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & -3 \end{vmatrix} \] ### Step 10: Expand the determinant Calculating the determinant: \[ = \hat{i} \left( \frac{1}{2} \cdot (-3) - 0 \cdot \frac{3}{2} \right) - \hat{j} \left( \frac{3}{2} \cdot (-3) - 0 \cdot -\frac{1}{2} \right) + \hat{k} \left( \frac{3}{2} \cdot \frac{3}{2} - \frac{1}{2} \cdot -\frac{1}{2} \right) \] \[ = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \left( \frac{9}{4} + \frac{1}{4} \right)\hat{k} \] \[ = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{10}{4}\hat{k} \] \[ = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{5}{2}\hat{k} \] ### Final Result Thus, the result of \(\vec{\beta_1} \times \vec{\beta_2}\) is: \[ \vec{\beta_1} \times \vec{\beta_2} = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{5}{2}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If vecalpha=3 hat i+4 hat j+5 hat k and vecbeta=2 hat i+ hat j-\ 4 hat k , then express vecbeta in the form vecbeta_1+ vecbeta_2, where vecbeta_1\ is parallel to vecalpha and vecbeta is perpendicular to vecalpha .

If vecalpha=3 hat i+4 hat j+5 hat k and vecbeta=2 hat i+ hat j-4 hat k , then express vecbeta in the form of vecbeta= vecbeta_1+ vecbeta_2, where vecbeta_1 is parallel to vecalpha and vecbeta_2 is perpendicular to vecalpha .

If vecalpha=3 hat i+4 hat j+5 hat k\ a n d\ vecbeta=2 hat i+ hat j-4 hat k , then express vecbeta in the form of vecbeta= vecbeta_1+ vecbeta_2w h e r e\ vecbeta_1 is parallel to vecalpha\ a n d\ vecbeta_2 is perpendicular to vecalphadot

If with reference to a right handed system of mutually perpendicular unit vectors hat i ,\ hat j ,\ hat k we have vecalpha=3 hat i- hat j ,\ a n d\ vecbeta=2 hat i+ hat j-3 hat kdot Express vecbeta in the form vecbeta= vecbeta_1+ vecbeta_2,\ w h e r e\ vecbeta_1 is parallel to vecalpha\ a n d\ vecbeta_2 is perpendicular to vecalphadot

If with reference to the right handed system of mutually perpendicular unit vectors hat i , hat j and hat k , vecalpha=3 hat i- hat j , vecbeta=2 hat i+ hat j-3 hat k , then express vecbeta in the from vecbeta=vecbeta_1+ vecbeta_2 , where vecbeta_1 is parallel to vecalpha and vecbeta_2 is perpendicular to vecalpha

If the vector vecb = 3hati + 4hatk is written as the sum of a vector vecb_(1) parallel to veca = hati + hatj and a vector vecb_(2) , perpendicular to veca then vecb_(1) xx vecb_(2) is equal to:

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

Let vecalpha=a hat i+b hat j+c hat k , vecbeta=b hat i+c hat j+a hat ka n d vecgamma=c hat i+a hat j+b hat k are three coplanar vectors with a!=b ,a n d vec v= hat i+ hat j+ hat kdot Then v is perpendicular to vecalpha b. vecbeta c. vecgamma d. none of these

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(2) is equal to

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  3. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  4. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  5. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |

  6. Let A(3,0,-1), B(2,10,6) and C(1,2,1) be the vertices of a triangle an...

    Text Solution

    |

  7. If a unit vector vec a makes angle pi//3 with hat i ,pi//4 with hat...

    Text Solution

    |

  8. Let a=hati + hatj + sqrt(2)hatk, b=b(1)hati + b(2)hatj + sqrt(2)hatk a...

    Text Solution

    |

  9. Prove that the line x=ay+b, z=cy+d and x=a'y+b', z=dy+d' are perpendic...

    Text Solution

    |

  10. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |

  11. Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, ...

    Text Solution

    |

  12. If the length of the perpendicular from the point (beta, 0,beta) (beta...

    Text Solution

    |

  13. Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk. If vecbeta...

    Text Solution

    |

  14. Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk, for some real ...

    Text Solution

    |

  15. The sum of the distinct real values of mu, for which the vectors, mu h...

    Text Solution

    |

  16. If veca=hati+2hatj+4hatk, vecb=hati+lamdahatj+4hatk, vecc=2hati+4hatj+...

    Text Solution

    |

  17. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  18. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  19. Let alpha = (lambda-2) a + b and beta =(4lambda -2)a + 3b be two given...

    Text Solution

    |

  20. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |