Home
Class 12
MATHS
Let a=3hati + 2hatj + xhatk and b = hati...

Let `a=3hati + 2hatj + xhatk` and `b = hati - hatj + hatk`, for some real x. Then `|a+b| = r` is possible if.

A

`0 lt r le sqrt(3)/2`

B

`sqrt(3)/2 lt r le 3sqrt(3/2)`

C

`3sqrt(3/2) lt r le 5sqrt(3/2)`

D

`r ge sqrt(17)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector sum \( a + b \) and determine the conditions under which this magnitude can be equal to \( r \). ### Step-by-Step Solution: 1. **Define the vectors**: \[ a = 3\hat{i} + 2\hat{j} + x\hat{k} \] \[ b = \hat{i} - \hat{j} + \hat{k} \] 2. **Calculate the vector sum \( a + b \)**: \[ a + b = (3\hat{i} + 2\hat{j} + x\hat{k}) + (\hat{i} - \hat{j} + \hat{k}) \] Combine the components: \[ = (3 + 1)\hat{i} + (2 - 1)\hat{j} + (x + 1)\hat{k} \] \[ = 4\hat{i} + 1\hat{j} + (x + 1)\hat{k} \] 3. **Find the magnitude of \( a + b \)**: The magnitude \( |a + b| \) is given by: \[ |a + b| = \sqrt{(4)^2 + (1)^2 + (x + 1)^2} \] \[ = \sqrt{16 + 1 + (x + 1)^2} \] \[ = \sqrt{17 + (x + 1)^2} \] 4. **Determine the conditions for \( r \)**: Since \( x \) is a real number, \( (x + 1)^2 \) is always non-negative. Therefore: \[ (x + 1)^2 \geq 0 \] This implies: \[ 17 + (x + 1)^2 \geq 17 \] Taking the square root of both sides gives: \[ \sqrt{17 + (x + 1)^2} \geq \sqrt{17} \] Thus: \[ |a + b| \geq \sqrt{17} \] Therefore, \( r \) must satisfy: \[ r \geq \sqrt{17} \] ### Conclusion: The magnitude \( r \) is possible if \( r \geq \sqrt{17} \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let oversetto a=3hati+2hatj+xhatk and oversettob=hati-hatj+hatK Some real x. Then |oversettoaxxoversettob|=r is possible if: A. 3 sqrt ((3 )/(2)) lt r lt 5sqrt ((3)/(2)) B. 0 lt r le sqrt ((3)/(2)) C. r ge 5 sqrt (( 3 )/(2)) D. sqrt (( 3 ) /(2) lt r le 3 sqrt ((3 ) /(2))

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors. If a vector perpendicular to both the a + b and a-b has the magnitude 12, then one such vector is:

If a =2hati+3hatj+4hatk and b =4hati+3hatj +2hatk ,find the angel between a and b.

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=-2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then

The position vectors of points A and B are hati - hatj + 3hatk and 3hati + 3hatj - hatk respectively. The equation of a plane is vecr cdot (5hati + 2hatj - 7hatk)= 0 The points A and B

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

If a=2hati+2hatj-8hatk and b=hati+3hatj-4hatk , then the magnitude of a+b is equal to

If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  3. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  4. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  5. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |

  6. Let A(3,0,-1), B(2,10,6) and C(1,2,1) be the vertices of a triangle an...

    Text Solution

    |

  7. If a unit vector vec a makes angle pi//3 with hat i ,pi//4 with hat...

    Text Solution

    |

  8. Let a=hati + hatj + sqrt(2)hatk, b=b(1)hati + b(2)hatj + sqrt(2)hatk a...

    Text Solution

    |

  9. Prove that the line x=ay+b, z=cy+d and x=a'y+b', z=dy+d' are perpendic...

    Text Solution

    |

  10. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |

  11. Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, ...

    Text Solution

    |

  12. If the length of the perpendicular from the point (beta, 0,beta) (beta...

    Text Solution

    |

  13. Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk. If vecbeta...

    Text Solution

    |

  14. Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk, for some real ...

    Text Solution

    |

  15. The sum of the distinct real values of mu, for which the vectors, mu h...

    Text Solution

    |

  16. If veca=hati+2hatj+4hatk, vecb=hati+lamdahatj+4hatk, vecc=2hati+4hatj+...

    Text Solution

    |

  17. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  18. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  19. Let alpha = (lambda-2) a + b and beta =(4lambda -2)a + 3b be two given...

    Text Solution

    |

  20. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |