Home
Class 12
MATHS
The sum of the distinct real values of m...

The sum of the distinct real values of `mu`, for which the vectors, `mu hati + hatj + hatk, hati + mu hatj + hatk, hati + hatj + muhatk` are coplanar, is

A

2

B

0

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of the distinct real values of \( \mu \) for which the vectors \( \mu \hat{i} + \hat{j} + \hat{k} \), \( \hat{i} + \mu \hat{j} + \hat{k} \), and \( \hat{i} + \hat{j} + \mu \hat{k} \) are coplanar, we can follow these steps: ### Step 1: Define the vectors Let: - \( \vec{A} = \mu \hat{i} + \hat{j} + \hat{k} \) - \( \vec{B} = \hat{i} + \mu \hat{j} + \hat{k} \) - \( \vec{C} = \hat{i} + \hat{j} + \mu \hat{k} \) ### Step 2: Use the condition for coplanarity The vectors \( \vec{A}, \vec{B}, \vec{C} \) are coplanar if their scalar triple product is zero: \[ \vec{A} \cdot (\vec{B} \times \vec{C}) = 0 \] ### Step 3: Set up the determinant The scalar triple product can be computed using the determinant of a matrix formed by the coefficients of the vectors: \[ \begin{vmatrix} \mu & 1 & 1 \\ 1 & \mu & 1 \\ 1 & 1 & \mu \end{vmatrix} = 0 \] ### Step 4: Calculate the determinant Expanding the determinant: \[ = \mu \begin{vmatrix} \mu & 1 \\ 1 & \mu \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & \mu \end{vmatrix} + 1 \begin{vmatrix} 1 & \mu \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ = \mu (\mu^2 - 1) - (1 \cdot \mu - 1 \cdot 1) + (1 \cdot 1 - \mu \cdot 1) \] \[ = \mu (\mu^2 - 1) - (\mu - 1) + (1 - \mu) \] \[ = \mu^3 - \mu - \mu + 1 + 1 - \mu \] \[ = \mu^3 - 3\mu + 2 \] ### Step 5: Set the determinant to zero Setting the expression to zero gives us: \[ \mu^3 - 3\mu + 2 = 0 \] ### Step 6: Factor the polynomial To find the roots of the polynomial, we can use the Rational Root Theorem or synthetic division. Testing \( \mu = 1 \): \[ 1^3 - 3(1) + 2 = 0 \] So \( \mu - 1 \) is a factor. Dividing \( \mu^3 - 3\mu + 2 \) by \( \mu - 1 \): \[ \mu^3 - 3\mu + 2 = (\mu - 1)(\mu^2 + \mu - 2) \] ### Step 7: Factor the quadratic Now, we need to factor \( \mu^2 + \mu - 2 \): \[ \mu^2 + 2\mu - \mu - 2 = (\mu + 2)(\mu - 1) \] Thus, we have: \[ (\mu - 1)^2(\mu + 2) = 0 \] ### Step 8: Find the distinct real values of \( \mu \) The roots are: - \( \mu = 1 \) (with multiplicity 2) - \( \mu = -2 \) ### Step 9: Calculate the sum of distinct values The distinct real values of \( \mu \) are \( 1 \) and \( -2 \). Therefore, the sum is: \[ 1 + (-2) = -1 \] ### Final Answer The sum of the distinct real values of \( \mu \) is \( \boxed{-1} \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

The number of distinct real values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

The number of real values of a for which the vectors hati+2hatj+hatk, ahati+hatj+2hatk and hati+2hatj+ahatk are coplanar is

The number of distinct values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

Find lambda if the vectors hati\ -\ hatj\ +\ hatk,\ 3 hati+\ hatj\ +\ 2 hatk\ and\ hati+lambda hatj+ hat3k\ are coplanar

If the vectors 4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk are coplanar, then m is equal to

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The value of lamda for which the four points 2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk and hati-lamdahatj+6hatk are coplanar.

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

Evaluate : [2hati " " hatj " " hatk ] +[hati hatk hatj ] +[hatk hatj 2hati ]

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  3. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  4. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  5. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |

  6. Let A(3,0,-1), B(2,10,6) and C(1,2,1) be the vertices of a triangle an...

    Text Solution

    |

  7. If a unit vector vec a makes angle pi//3 with hat i ,pi//4 with hat...

    Text Solution

    |

  8. Let a=hati + hatj + sqrt(2)hatk, b=b(1)hati + b(2)hatj + sqrt(2)hatk a...

    Text Solution

    |

  9. Prove that the line x=ay+b, z=cy+d and x=a'y+b', z=dy+d' are perpendic...

    Text Solution

    |

  10. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |

  11. Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, ...

    Text Solution

    |

  12. If the length of the perpendicular from the point (beta, 0,beta) (beta...

    Text Solution

    |

  13. Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk. If vecbeta...

    Text Solution

    |

  14. Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk, for some real ...

    Text Solution

    |

  15. The sum of the distinct real values of mu, for which the vectors, mu h...

    Text Solution

    |

  16. If veca=hati+2hatj+4hatk, vecb=hati+lamdahatj+4hatk, vecc=2hati+4hatj+...

    Text Solution

    |

  17. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  18. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  19. Let alpha = (lambda-2) a + b and beta =(4lambda -2)a + 3b be two given...

    Text Solution

    |

  20. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |