Home
Class 12
MATHS
Let a=hati - hatj, b=hati + hatj + hatk ...

Let `a=hati - hatj, b=hati + hatj + hatk` and c be a vector such that `a xx c + b=0` and a.c =4, then `|c|^(2)` is equal to .

A

8

B

`19/2`

C

9

D

`17/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the vectors Given: - \( \mathbf{a} = \hat{i} - \hat{j} \) - \( \mathbf{b} = \hat{i} + \hat{j} + \hat{k} \) Let \( \mathbf{c} = x \hat{i} + y \hat{j} + z \hat{k} \). ### Step 2: Use the dot product condition We know that \( \mathbf{a} \cdot \mathbf{c} = 4 \). Calculating the dot product: \[ \mathbf{a} \cdot \mathbf{c} = (1)(x) + (-1)(y) = x - y \] Setting this equal to 4 gives us: \[ x - y = 4 \quad \text{(Equation 1)} \] ### Step 3: Use the cross product condition We also have the condition \( \mathbf{a} \times \mathbf{c} + \mathbf{b} = 0 \), which implies: \[ \mathbf{a} \times \mathbf{c} = -\mathbf{b} \] Calculating \( \mathbf{a} \times \mathbf{c} \) using the determinant method: \[ \mathbf{a} \times \mathbf{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ x & y & z \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} -1 & 0 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ x & y \end{vmatrix} \] \[ = \hat{i} (-1 \cdot z - 0 \cdot y) - \hat{j} (1 \cdot z - 0 \cdot x) + \hat{k} (1 \cdot y - (-1) \cdot x) \] \[ = -z \hat{i} - z \hat{j} + (y + x) \hat{k} \] Setting this equal to \( -\mathbf{b} = -(\hat{i} + \hat{j} + \hat{k}) \): \[ -z \hat{i} - z \hat{j} + (y + x) \hat{k} = -\hat{i} - \hat{j} - \hat{k} \] ### Step 4: Equate coefficients From the above equation, we can equate coefficients: 1. For \( \hat{i} \): \( -z = -1 \) → \( z = 1 \) 2. For \( \hat{j} \): \( -z = -1 \) → \( z = 1 \) (consistent) 3. For \( \hat{k} \): \( y + x = -1 \) → \( y + x = -1 \quad \text{(Equation 2)} \) ### Step 5: Solve the equations Now we have two equations: 1. \( x - y = 4 \) (Equation 1) 2. \( x + y = -1 \) (Equation 2) Adding these two equations: \[ (x - y) + (x + y) = 4 - 1 \] \[ 2x = 3 \quad \Rightarrow \quad x = \frac{3}{2} \] Substituting \( x \) back into Equation 2: \[ \frac{3}{2} + y = -1 \quad \Rightarrow \quad y = -1 - \frac{3}{2} = -\frac{5}{2} \] ### Step 6: Write the vector \( \mathbf{c} \) Now we have: - \( x = \frac{3}{2} \) - \( y = -\frac{5}{2} \) - \( z = 1 \) Thus, \( \mathbf{c} = \frac{3}{2} \hat{i} - \frac{5}{2} \hat{j} + 1 \hat{k} \). ### Step 7: Calculate \( |\mathbf{c}|^2 \) Now we calculate the magnitude squared of \( \mathbf{c} \): \[ |\mathbf{c}|^2 = \left(\frac{3}{2}\right)^2 + \left(-\frac{5}{2}\right)^2 + (1)^2 \] \[ = \frac{9}{4} + \frac{25}{4} + 1 \] \[ = \frac{9}{4} + \frac{25}{4} + \frac{4}{4} = \frac{38}{4} = \frac{19}{2} \] ### Final Answer Thus, \( |\mathbf{c}|^2 = \frac{19}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let a=2hati+hatj+hatk,b=hati+2hatj-hatk and c is a unit vector coplanar to them. If c is perpendicular to a, then c is equal to

Let vecu=hati+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and vec c=d hati + hatj + (2d-1) hat k ." If " vec c is parallel to the plane of the vectors veca and vec b, " then " 11 d =

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

If a=hati+hatj+hatk,b=hati+hatj-hatk , then vectors perpendicular to a and b is/are

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  3. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  4. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  5. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |

  6. Let A(3,0,-1), B(2,10,6) and C(1,2,1) be the vertices of a triangle an...

    Text Solution

    |

  7. If a unit vector vec a makes angle pi//3 with hat i ,pi//4 with hat...

    Text Solution

    |

  8. Let a=hati + hatj + sqrt(2)hatk, b=b(1)hati + b(2)hatj + sqrt(2)hatk a...

    Text Solution

    |

  9. Prove that the line x=ay+b, z=cy+d and x=a'y+b', z=dy+d' are perpendic...

    Text Solution

    |

  10. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |

  11. Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, ...

    Text Solution

    |

  12. If the length of the perpendicular from the point (beta, 0,beta) (beta...

    Text Solution

    |

  13. Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk. If vecbeta...

    Text Solution

    |

  14. Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk, for some real ...

    Text Solution

    |

  15. The sum of the distinct real values of mu, for which the vectors, mu h...

    Text Solution

    |

  16. If veca=hati+2hatj+4hatk, vecb=hati+lamdahatj+4hatk, vecc=2hati+4hatj+...

    Text Solution

    |

  17. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  18. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  19. Let alpha = (lambda-2) a + b and beta =(4lambda -2)a + 3b be two given...

    Text Solution

    |

  20. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |