Home
Class 12
MATHS
Let alpha = (lambda-2) a + b and beta =(...

Let `alpha = (lambda-2) a + b` and `beta =(4lambda -2)a + 3b` be two given vectors where vectors a and b are non-collinear. The value of `lambda` for which vectors `alpha` and `beta` are collinear, is.

A

4

B

`-3`

C

3

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the vectors \( \alpha \) and \( \beta \) are collinear, we can follow these steps: ### Step 1: Write down the given vectors The vectors are defined as: \[ \alpha = (\lambda - 2) \mathbf{a} + \mathbf{b} \] \[ \beta = (4\lambda - 2) \mathbf{a} + 3\mathbf{b} \] ### Step 2: Use the condition for collinearity Two vectors \( \alpha \) and \( \beta \) are collinear if their cross product is zero: \[ \alpha \times \beta = \mathbf{0} \] ### Step 3: Compute the cross product \( \alpha \times \beta \) Substituting the expressions for \( \alpha \) and \( \beta \): \[ \alpha \times \beta = \left((\lambda - 2) \mathbf{a} + \mathbf{b}\right) \times \left((4\lambda - 2) \mathbf{a} + 3\mathbf{b}\right) \] ### Step 4: Expand the cross product Using the distributive property of the cross product: \[ \alpha \times \beta = (\lambda - 2)(4\lambda - 2) \mathbf{a} \times \mathbf{a} + 3(\lambda - 2) \mathbf{a} \times \mathbf{b} + (4\lambda - 2) \mathbf{b} \times \mathbf{a} + 3 \mathbf{b} \times \mathbf{b} \] ### Step 5: Simplify using properties of the cross product Recall that \( \mathbf{a} \times \mathbf{a} = \mathbf{0} \) and \( \mathbf{b} \times \mathbf{b} = \mathbf{0} \): \[ \alpha \times \beta = 3(\lambda - 2) \mathbf{a} \times \mathbf{b} + (4\lambda - 2) \mathbf{b} \times \mathbf{a} \] Using the property \( \mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b} \): \[ \alpha \times \beta = 3(\lambda - 2) \mathbf{a} \times \mathbf{b} - (4\lambda - 2) \mathbf{a} \times \mathbf{b} \] ### Step 6: Factor out \( \mathbf{a} \times \mathbf{b} \) \[ \alpha \times \beta = \left(3(\lambda - 2) - (4\lambda - 2)\right) \mathbf{a} \times \mathbf{b} \] ### Step 7: Set the expression to zero Since \( \mathbf{a} \times \mathbf{b} \neq \mathbf{0} \) (because \( \mathbf{a} \) and \( \mathbf{b} \) are non-collinear), we can set the scalar part to zero: \[ 3(\lambda - 2) - (4\lambda - 2) = 0 \] ### Step 8: Solve for \( \lambda \) Expanding and simplifying: \[ 3\lambda - 6 - 4\lambda + 2 = 0 \] \[ - \lambda - 4 = 0 \] \[ \lambda = -4 \] ### Final Answer The value of \( \lambda \) for which the vectors \( \alpha \) and \( \beta \) are collinear is: \[ \lambda = -4 \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If a, b and c are non-collinear unit vectors also b, c are non-collinear and 2atimes(btimesc)=b+c , then

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

If a and b are two non-zero and non-collinear vectors then a+b and a-b are

If vec aa n d vec b are non-collinear vectors, find the value of x for which the vectors vecalpha=(2x+1) vec a- vec b""a n d"" vecbeta=(x-2)"" vec a+ vec b are collinear.

a and b are non-collinear vectors. If c=(x-2) a+b and d=(2x+1)a-b are collinear vectors, then find the value of x.

If vecaandvecb are non-collinear vector, find the value of x such that the vectors vecalpha=(x-2)veca+vecbandvecbeta=(3+2x)veca-2vecb are collinear.

Let a,b and c be three non-zero vectors which are pairwise non-collinear. If a+3b is collinear with c and b+2c is collinear with a, then a+3b+6c is

Find the value of lambda . If the points A(-1,3,2), B(-4,2,-2) and C(5,lambda,10) are collinear.

Let alpha and beta be the values of x obtained form the equation lambda^(2) (x^(2)-x) + 2lambdax +3 =0 and if lambda_(1),lambda_(2) be the two values of lambda for which alpha and beta are connected by the relation alpha/beta + beta/alpha = 4/3 . then find the value of (lambda_(1)^(2))/(lambda_(2)) + (lambda_(2)^(2))/(lambda_(1)) and (lambda_(1)^(2))/lambda_(2)^(2) + (lambda_(2)^(2))/(lambda_(1)^(2))

Let a,b,c are three vectors of which every pair is non-collinear, if the vectors a+b and b+c are collinear with c annd a respectively, then find a+b+c.

VMC MODULES ENGLISH-VECTORS -JEE MAIN (ARCHIVE)
  1. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  2. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  3. If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2)...

    Text Solution

    |

  4. If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-v...

    Text Solution

    |

  5. Consider points A,B,C annd D with position vectors 7hati-4hatj+7hatk,h...

    Text Solution

    |

  6. Let A(3,0,-1), B(2,10,6) and C(1,2,1) be the vertices of a triangle an...

    Text Solution

    |

  7. If a unit vector vec a makes angle pi//3 with hat i ,pi//4 with hat...

    Text Solution

    |

  8. Let a=hati + hatj + sqrt(2)hatk, b=b(1)hati + b(2)hatj + sqrt(2)hatk a...

    Text Solution

    |

  9. Prove that the line x=ay+b, z=cy+d and x=a'y+b', z=dy+d' are perpendic...

    Text Solution

    |

  10. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |

  11. Let alpha epsilon R and the three vectors veca=alpha hati+hatj+3hatk, ...

    Text Solution

    |

  12. If the length of the perpendicular from the point (beta, 0,beta) (beta...

    Text Solution

    |

  13. Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk. If vecbeta...

    Text Solution

    |

  14. Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk, for some real ...

    Text Solution

    |

  15. The sum of the distinct real values of mu, for which the vectors, mu h...

    Text Solution

    |

  16. If veca=hati+2hatj+4hatk, vecb=hati+lamdahatj+4hatk, vecc=2hati+4hatj+...

    Text Solution

    |

  17. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  18. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  19. Let alpha = (lambda-2) a + b and beta =(4lambda -2)a + 3b be two given...

    Text Solution

    |

  20. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |