Home
Class 12
MATHS
for any three vectors, veca, vecb and ve...

for any three vectors, `veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the equation: \[ (\vec{a} - \vec{b}) \cdot (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) = 2 \vec{a} \cdot (\vec{b} \times \vec{c}) \] ### Step 1: Rewrite the left-hand side We start with the left-hand side: \[ (\vec{a} - \vec{b}) \cdot (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \] ### Step 2: Use the properties of the dot and cross products We can rewrite the expression using the distributive property of the dot product: \[ = \vec{a} \cdot ((\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})) - \vec{b} \cdot ((\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})) \] ### Step 3: Expand the cross product Now, we need to compute the cross product \((\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})\): Using the distributive property of the cross product: \[ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) = \vec{b} \times \vec{c} - \vec{b} \times \vec{a} - \vec{c} \times \vec{c} + \vec{c} \times \vec{a} \] Since \(\vec{c} \times \vec{c} = \vec{0}\), we have: \[ = \vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \] ### Step 4: Substitute back into the expression Substituting this back into our expression gives: \[ = \vec{a} \cdot (\vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a}) - \vec{b} \cdot (\vec{b} \times \vec{c} - \vec{b} \times \vec{a} + \vec{c} \times \vec{a}) \] ### Step 5: Simplify the dot products Using the property that \(\vec{x} \cdot (\vec{y} \times \vec{z})\) gives the volume of the parallelepiped formed by the vectors, we can simplify: 1. \(\vec{a} \cdot (\vec{b} \times \vec{c})\) 2. \(\vec{a} \cdot (\vec{b} \times \vec{a}) = 0\) (since \(\vec{a} \times \vec{a} = \vec{0}\)) 3. \(\vec{a} \cdot (\vec{c} \times \vec{a}) = 0\) (for the same reason) For the second term: 1. \(\vec{b} \cdot (\vec{b} \times \vec{c}) = 0\) 2. \(\vec{b} \cdot (\vec{b} \times \vec{a}) = 0\) 3. \(\vec{b} \cdot (\vec{c} \times \vec{a})\) Thus, we have: \[ = \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{b} \cdot (\vec{c} \times \vec{a}) \] ### Step 6: Final simplification Now, we can see that the left-hand side simplifies to: \[ = \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{b} \cdot (\vec{c} \times \vec{a}) \] ### Step 7: Check the equality Now we need to check if this equals \(2 \vec{a} \cdot (\vec{b} \times \vec{c})\). From our simplification, we have: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) - \vec{b} \cdot (\vec{c} \times \vec{a}) \neq 2 \vec{a} \cdot (\vec{b} \times \vec{c}) \] Thus, the original statement is **false**.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb and vecc)]=4 , then [vecaxx(vecb+2vecc)vecbxx(vecc-3veca)vecc xx(3veca+vecb)] is equal to

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If two out to the three vectors , veca, vecb , vecc are unit vectors such that veca + vecb + vecc =0 and 2(veca.vecb + vecb .vecc + vecc.veca) +3=0 then the length of the third vector is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)
  1. Sate true/false. The points with position vectors veca + vecb, veca-ve...

    Text Solution

    |

  2. Let vecA, vecB and vecC be unit vectors such that vecA.vecB = vecA.vec...

    Text Solution

    |

  3. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  4. If vecX.vecA=0, vecX.vecB=0,vecX.vecC=0 for some non-zero vector, vecX...

    Text Solution

    |

  5. find three- dimensional vectors, vecv1, vecv2 and vecv3" satisfying "...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. In a triangle A B C ,Da n dE are points on B Ca n dA C , respectivley,...

    Text Solution

    |

  8. Determine the value of c so that for all real x , vectors c x hat i-6 ...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. Let OACB be a parallelogram with O at the origin and OC a diagonal. Le...

    Text Solution

    |

  11. Let vec A(t) = f1(t) hat i + f2(t) hat j and vec B(t) = g(t)hat i+g2(...

    Text Solution

    |

  12. If veca, vecb, vecc and vecd ar distinct vectors such that veca xx v...

    Text Solution

    |

  13. For any two vectors vecu and vecv prove that (1+|vecu|^2)(1+|vecv|^2) ...

    Text Solution

    |

  14. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+...

    Text Solution

    |

  19. The position vectors of the point A, B, C and D are 3hati-2hatj -hatk,...

    Text Solution

    |

  20. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |