Home
Class 12
MATHS
If vecA,vecB,vecC are three vectors resp...

If `vecA,vecB,vecC` are three vectors respectively given by `2hati+hatk, hati+hatj+hatk and 4hati-3hatj+7hatk, ` then the vector `vecR` which satisfies the relations `vecRxxvecB=vecCxxvecB and vecR.vecA=0` is (A) `2hati-8hatj+2hatk` (B) `hati-4hatj+2hatk` (C) `-hati-8hatj+2hatk` (D) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{R}\) that satisfies the conditions \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\) and \(\vec{R} \cdot \vec{A} = 0\). Let's break this down step by step. ### Step 1: Define the vectors Given: - \(\vec{A} = 2\hat{i} + \hat{k}\) - \(\vec{B} = \hat{i} + \hat{j} + \hat{k}\) - \(\vec{C} = 4\hat{i} - 3\hat{j} + 7\hat{k}\) ### Step 2: Find \(\vec{R}\) in terms of components Let \(\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}\). ### Step 3: Use the condition \(\vec{R} \cdot \vec{A} = 0\) Calculate the dot product: \[ \vec{R} \cdot \vec{A} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} + \hat{k}) = 2x + z = 0 \] This gives us our first equation: \[ z = -2x \quad \text{(1)} \] ### Step 4: Find \(\vec{C} \times \vec{B}\) Now we need to calculate \(\vec{C} \times \vec{B}\): \[ \vec{C} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -3 & 7 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-3)(1) - (7)(1)) - \hat{j}((4)(1) - (7)(1)) + \hat{k}((4)(1) - (-3)(1)) \] \[ = \hat{i}(-3 - 7) - \hat{j}(4 - 7) + \hat{k}(4 + 3) \] \[ = -10\hat{i} + 3\hat{j} + 7\hat{k} \] ### Step 5: Use the condition \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\) Now we need to compute \(\vec{R} \times \vec{B}\): \[ \vec{R} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(y(1) - z(1)) - \hat{j}(x(1) - z(1)) + \hat{k}(x(1) - y(1)) \] \[ = (y - z)\hat{i} - (x - z)\hat{j} + (x - y)\hat{k} \] ### Step 6: Set the components equal to \(\vec{C} \times \vec{B}\) Equating the components: 1. \(y - z = -10\) \quad (2) 2. \(- (x - z) = 3 \implies x - z = -3 \quad (3)\) 3. \(x - y = 7 \quad (4)\) ### Step 7: Substitute \(z\) from equation (1) into equations (2), (3), and (4) Substituting \(z = -2x\) into equations (2), (3), and (4): 1. \(y - (-2x) = -10 \implies y + 2x = -10 \quad (5)\) 2. \(x - (-2x) = -3 \implies 3x = -3 \implies x = -1 \quad (6)\) 3. \(x - y = 7 \quad (4)\) ### Step 8: Solve for \(y\) and \(z\) From equation (6): \[ x = -1 \] Substituting \(x = -1\) into equation (1): \[ z = -2(-1) = 2 \] Substituting \(x = -1\) into equation (4): \[ -1 - y = 7 \implies y = -8 \] ### Step 9: Write the final vector \(\vec{R}\) Thus, we have: \[ \vec{R} = -1\hat{i} - 8\hat{j} + 2\hat{k} \] ### Conclusion The vector \(\vec{R}\) is: \[ \vec{R} = -\hat{i} - 8\hat{j} + 2\hat{k} \] This corresponds to option (C).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (INTEGER TYPE)|4 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let veca=hatj-hatk and vecc=hati-hatj-hatk . Then the vector vecb satisfying vecaxxvecb+vecc=0 and veca.vecb=3 is (A) -hati+hatj-2hatk (B) 2hati-hatj+2hatk (C) hati-hatj-hatk (D) hati+hatj-2hatk

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)
  1. Let vec A(t) = f1(t) hat i + f2(t) hat j and vec B(t) = g(t)hat i+g2(...

    Text Solution

    |

  2. If veca, vecb, vecc and vecd ar distinct vectors such that veca xx v...

    Text Solution

    |

  3. For any two vectors vecu and vecv prove that (1+|vecu|^2)(1+|vecv|^2) ...

    Text Solution

    |

  4. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+...

    Text Solution

    |

  9. The position vectors of the point A, B, C and D are 3hati-2hatj -hatk,...

    Text Solution

    |

  10. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |

  11. If vectors, vecb, vecc and vecd are not coplanar, the prove that vecto...

    Text Solution

    |

  12. If c is a given non - zero scalar, and vecA and vecB are given non- ze...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. Two triangles ABC and PQR are such that the perpendiculars from A to Q...

    Text Solution

    |

  15. Find the position vector of the mid point of the vector joining the p...

    Text Solution

    |

  16. Prove, by vector method or otherwise, that the point of intersectio...

    Text Solution

    |

  17. Let veca, vecb and vecc be non - coplanar unit vectors, equally inclin...

    Text Solution

    |

  18. If vecA,vecB,vecC are three vectors respectively given by 2hati+hatk, ...

    Text Solution

    |

  19. If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,...

    Text Solution

    |

  20. Find the all the values of lamda such that (x,y,z)!=(0,0,0)and x(hati+...

    Text Solution

    |