Home
Class 12
PHYSICS
Calculate the magnitude of the vector, o...

Calculate the magnitude of the vector, `overset(rarr)r =(3 hat i+4 hat j + 7hat k)` metre.

Text Solution

AI Generated Solution

To calculate the magnitude of the vector \(\overset{r}{r} = 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\) meters, we can follow these steps: ### Step 1: Identify the components of the vector The vector is given in the form: \[ \overset{r}{r} = 3 \hat{i} + 4 \hat{j} + 7 \hat{k} \] Here, the components are: ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS & FORCES

    VMC MODULES ENGLISH|Exercise level 1|75 Videos
  • INTRODUCTION TO VECTORS & FORCES

    VMC MODULES ENGLISH|Exercise level 2|65 Videos
  • GRAVITATION

    VMC MODULES ENGLISH|Exercise JEE Advance (Archive) TRUE/FALSE|1 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART I : PHYSICS (SECTION - 2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector of the vector vec(r ) = 4hat(i) - 2hat(j) + 3 hat(k)

Find the magnitude of vector vec a=(3 hat k+4 hat j)xx( hat i+ hat j- hat k)dot

What is the torque of a force overset(rarr)F=(2 hat i -3 hat j +4 hat k) Newton acting at a point overset(rarr)r=(3 hat I +2 hat j + 3 hat k) metre about the origin ?

Compute the magnitude of the following vectors: veca= hat i+ hat j+ hat k ; vecb=2 hat i-7 hat j-3 hat k ; vecc=1/(sqrt(3)) hat i+1/(sqrt(3)) hat j-1/(sqrt(3)) hat k

The area of parallelogram represented by the vectors overset(rarr)A = 2 hat i + 3 hat j and overset(rarr)B=hat i+4 hat j is

Following forces start acting on a particle at rest at the origin of the co-ordinate system overset(rarr)F_(1)=-4 hat I -5 hat j +5hat k , overset(rarr)F_(2)=5hat I +8 hat j +6hat k , overset(rarr)F_(3)=-3hat I + 4 hat j - 7 hat k and overset(rarr)F_(4)=2hat i - 3 hat j - 2 hat k then the particle will move

Find the volume of the parallelepiped whose edges are represented by the vectors overset(to) (a) = 2 hat(i) - 3 hat(j) -4 hat(k), overset(to)( b) = hat(i) + 2 hat(j) - hat(k) , overset(to)( c) =3 hat(i) - hat(j) - 2 hat(k) .

A vector parallel to the line of intersection of the planes overset(to)( r) (3 hat(i) - hat(j) + hat(k) )=5 and overset(to) (r ) (hat(i) +4 hat(j) - 2 hat(k) )=3 is

Consider a system of two vectors overset(rarr)a=3hat i +4 hat j, overset(rarr)b=hat i+hatj ,

Find a vector magnitude 5 units, and parallel to the resultant of the vectors vec a=2 hat i+3 hat j- hat k and vec b= hat i-2 hat j+ hat kdot