Home
Class 12
MATHS
If omega is cube roots of unity, prove t...

If `omega` is cube roots of unity, prove that `{[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]`

A

`[(0),(0),(0)]`

B

`[(1,0,0),(0,1,0),(0,0,1)]`

C

`[(1),(0),(1)]`

D

`[(1),(1),(1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the statement given in the question, we will follow these steps: ### Step 1: Define the Matrices Let: \[ A = \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{pmatrix} \] and \[ B = \begin{pmatrix} \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \\ \omega & \omega^2 & 1 \end{pmatrix} \] We need to prove that: \[ (A + B) \begin{pmatrix} 1 \\ \omega \\ \omega^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] ### Step 2: Add the Matrices A and B Now, we will add matrices \( A \) and \( B \): \[ A + B = \begin{pmatrix} 1 + \omega & \omega + \omega^2 & \omega^2 + 1 \\ \omega + \omega^2 & \omega^2 + 1 & 1 + \omega \\ \omega^2 + 1 & 1 + \omega & \omega + \omega^2 \end{pmatrix} \] ### Step 3: Simplify Each Entry Using the property of cube roots of unity, we know: \[ 1 + \omega + \omega^2 = 0 \implies \omega + \omega^2 = -1 \] Thus, we can simplify each entry: - \( 1 + \omega = -\omega^2 \) - \( \omega + \omega^2 = -1 \) - \( \omega^2 + 1 = -\omega \) So, we can rewrite the matrix \( A + B \): \[ A + B = \begin{pmatrix} -\omega^2 & -1 & -\omega \\ -1 & -\omega & -\omega^2 \\ -\omega & -\omega^2 & -1 \end{pmatrix} \] ### Step 4: Multiply the Resulting Matrix by the Vector Now we will multiply \( (A + B) \) by the vector \( \begin{pmatrix} 1 \\ \omega \\ \omega^2 \end{pmatrix} \): \[ (A + B) \begin{pmatrix} 1 \\ \omega \\ \omega^2 \end{pmatrix} = \begin{pmatrix} -\omega^2 \cdot 1 - 1 \cdot \omega - \omega \cdot \omega^2 \\ -1 \cdot 1 - \omega \cdot \omega - \omega^2 \cdot \omega^2 \\ -\omega \cdot 1 - \omega^2 \cdot \omega - 1 \cdot \omega^2 \end{pmatrix} \] Calculating each entry: 1. First entry: \[ -\omega^2 - \omega - \omega^3 = -\omega^2 - \omega - 1 \quad (\text{since } \omega^3 = 1) \] Using \( 1 + \omega + \omega^2 = 0 \): \[ = 0 \] 2. Second entry: \[ -1 - \omega^2 - \omega^4 = -1 - \omega^2 - \omega \quad (\text{since } \omega^4 = \omega) \] Using \( 1 + \omega + \omega^2 = 0 \): \[ = 0 \] 3. Third entry: \[ -\omega - \omega^3 - \omega^2 = -\omega - 1 - \omega^2 \] Using \( 1 + \omega + \omega^2 = 0 \): \[ = 0 \] ### Step 5: Conclusion Thus, we have shown that: \[ (A + B) \begin{pmatrix} 1 \\ \omega \\ \omega^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] This completes the proof.
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, show that ([[1,omega,omega^2],[omega,omega^2, 1],[omega^2, 1,omega]]+[[omega,omega^2, 1],[omega^2 ,1,omega],[omega,omega^2, 1]])[[1,omega,omega^2]]=[[0, 0 ,0]]

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |