Home
Class 12
MATHS
If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a...

If `A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}]`, show that AB is a zero matrix.

A

0

B

1

C

2I

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To show that the product of matrices \( A \) and \( B \) is a zero matrix, we will perform matrix multiplication step by step. Given: \[ A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \] \[ B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \] We need to compute \( AB \) and show that it results in a zero matrix. ### Step 1: Calculate the first row of \( AB \) 1. **First element (Row 1, Column 1)**: \[ 0 \cdot a^2 + c \cdot ab + (-b) \cdot ac = 0 + abc - abc = 0 \] 2. **Second element (Row 1, Column 2)**: \[ 0 \cdot ab + c \cdot b^2 + (-b) \cdot bc = 0 + cb^2 - b^2c = 0 \] 3. **Third element (Row 1, Column 3)**: \[ 0 \cdot ac + c \cdot bc + (-b) \cdot c^2 = 0 + c^2b - bc^2 = 0 \] Thus, the first row of \( AB \) is: \[ (0, 0, 0) \] ### Step 2: Calculate the second row of \( AB \) 1. **First element (Row 2, Column 1)**: \[ (-c) \cdot a^2 + 0 \cdot ab + a \cdot ac = -ca^2 + 0 + a^2c = 0 \] 2. **Second element (Row 2, Column 2)**: \[ (-c) \cdot ab + 0 \cdot b^2 + a \cdot bc = -cab + 0 + abc = 0 \] 3. **Third element (Row 2, Column 3)**: \[ (-c) \cdot ac + 0 \cdot bc + a \cdot c^2 = -c^2a + 0 + ac^2 = 0 \] Thus, the second row of \( AB \) is: \[ (0, 0, 0) \] ### Step 3: Calculate the third row of \( AB \) 1. **First element (Row 3, Column 1)**: \[ b \cdot a^2 + (-a) \cdot ab + 0 \cdot ac = ba^2 - ab^2 + 0 = 0 \] 2. **Second element (Row 3, Column 2)**: \[ b \cdot ab + (-a) \cdot b^2 + 0 \cdot bc = ab^2 - ab^2 + 0 = 0 \] 3. **Third element (Row 3, Column 3)**: \[ b \cdot ac + (-a) \cdot bc + 0 \cdot c^2 = abc - abc + 0 = 0 \] Thus, the third row of \( AB \) is: \[ (0, 0, 0) \] ### Conclusion Combining all rows, we find that: \[ AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] which is indeed a zero matrix.
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)=

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

If A=[[0 ,c,-b],[-c, 0, a],[ b, -a, 0]] and B=[[a^2, ab, ac],[ ab, b^2 , bc],[ ac ,bc, c^2]] , show that A B=B A=O_3xx3 .

Find the product of the following two matrices [(0,c,-b),(c,0,a),(b,-a,0)] and [(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2)] .

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Prove the following by multiplication of determinants and power cofactor formula |{:(0,c,b),(c,0,a),(b,a,0):}|^(2)=|{:(b^(2)+v^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| =|{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}|=4a^(2)b^(2)c^(2)

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |