Home
Class 12
MATHS
If theta-phi=pi/2, prove that, [(cos^2 t...

If `theta-phi=pi/2,` prove that, `[(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0`

A

I

B

0

C

`-I`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \begin{pmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{pmatrix} = 0 \] given that \(\theta - \phi = \frac{\pi}{2}\), we can follow these steps: ### Step 1: Express \(\theta\) in terms of \(\phi\) From the equation \(\theta - \phi = \frac{\pi}{2}\), we can express \(\theta\) as: \[ \theta = \frac{\pi}{2} + \phi \] ### Step 2: Find \(\cos \theta\) and \(\sin \theta\) Using the angle addition formulas: \[ \cos \theta = \cos\left(\frac{\pi}{2} + \phi\right) = -\sin \phi \] \[ \sin \theta = \sin\left(\frac{\pi}{2} + \phi\right) = \cos \phi \] ### Step 3: Substitute \(\cos \theta\) and \(\sin \theta\) into the first matrix Substituting these values into the first matrix, we get: \[ \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} = \begin{pmatrix} (-\sin \phi)^2 & (-\sin \phi)(\cos \phi) \\ (-\sin \phi)(\cos \phi) & (\cos \phi)^2 \end{pmatrix} = \begin{pmatrix} \sin^2 \phi & -\sin \phi \cos \phi \\ -\sin \phi \cos \phi & \cos^2 \phi \end{pmatrix} \] ### Step 4: Multiply the two matrices Now we need to multiply the two matrices: \[ \begin{pmatrix} \sin^2 \phi & -\sin \phi \cos \phi \\ -\sin \phi \cos \phi & \cos^2 \phi \end{pmatrix} \begin{pmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{pmatrix} \] Calculating the elements of the resulting matrix: - **Element (1,1)**: \[ \sin^2 \phi \cdot \cos^2 \phi + (-\sin \phi \cos \phi) \cdot (\cos \phi \sin \phi) = \sin^2 \phi \cos^2 \phi - \sin^2 \phi \cos^2 \phi = 0 \] - **Element (1,2)**: \[ \sin^2 \phi \cdot (\cos \phi \sin \phi) + (-\sin \phi \cos \phi) \cdot \sin^2 \phi = \sin^2 \phi \cos \phi \sin \phi - \sin^2 \phi \cos \phi = 0 \] - **Element (2,1)**: \[ (-\sin \phi \cos \phi) \cdot \cos^2 \phi + \cos^2 \phi \cdot (-\sin \phi \cos \phi) = -\sin \phi \cos^3 \phi - \sin \phi \cos^3 \phi = -2\sin \phi \cos^3 \phi \] - **Element (2,2)**: \[ (-\sin \phi \cos \phi) \cdot (\cos \phi \sin \phi) + \cos^2 \phi \cdot \sin^2 \phi = -\sin^2 \phi \cos^2 \phi + \cos^2 \phi \sin^2 \phi = 0 \] ### Step 5: Combine the results Combining these results, we find that all elements of the resulting matrix are zero: \[ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0 \] ### Conclusion Thus, we have shown that: \[ \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \begin{pmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{pmatrix} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Flind the product of two matrices A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]] Show that, AB is the zero matrix if theta and phi differ by an odd multipl of pi/2 .

Prove that (cos theta+sin theta )^2 + (cos theta - sin theta )^2 =2

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

Prove that (1- cos theta + sin theta)/( 1+cos theta +sin theta) = "tan"(theta)/(2) .

Prove that : (cos 4theta + cos 3theta + cos 2theta)/(sin 4theta + sin 3theta + sin 2theta) = cot 3theta

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |