Home
Class 12
MATHS
|(1+i, 1-i, i), (1-i, i, 1+i), (i, 1+i, ...

`|(1+i, 1-i, i), (1-i, i, 1+i), (i, 1+i, 1-i)|=`

A

`-4-7i`

B

`4+7i`

C

`3+7i`

D

`7+4i`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix \[ \begin{pmatrix} 1+i & 1-i & i \\ 1-i & i & 1+i \\ i & 1+i & 1-i \end{pmatrix} \] we will use the formula for the determinant of a 3x3 matrix. The determinant \(D\) of a matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is given by: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] ### Step 1: Identify the elements of the matrix From our matrix, we have: - \(a = 1+i\) - \(b = 1-i\) - \(c = i\) - \(d = 1-i\) - \(e = i\) - \(f = 1+i\) - \(g = i\) - \(h = 1+i\) - \(i = 1-i\) ### Step 2: Calculate the determinant using the formula Using the determinant formula: \[ D = (1+i) \left( i(1-i) - (1+i)(1+i) \right) - (1-i) \left( (1-i)(1-i) - i(1+i) \right) + i \left( (1-i)(1+i) - i(i) \right) \] ### Step 3: Calculate each term in the determinant 1. **First term**: \[ (1+i) \left( i(1-i) - (1+i)(1+i) \right) \] - Calculate \(i(1-i) = i - i^2 = i + 1\) - Calculate \((1+i)(1+i) = 1 + 2i + i^2 = 1 + 2i - 1 = 2i\) - Thus, \(i(1-i) - (1+i)(1+i) = (i + 1) - 2i = 1 - i\) - Therefore, the first term becomes \((1+i)(1-i) = 1^2 - i^2 = 1 + 1 = 2\) 2. **Second term**: \[ -(1-i) \left( (1-i)(1-i) - i(1+i) \right) \] - Calculate \((1-i)(1-i) = 1 - 2i + i^2 = 1 - 2i - 1 = -2i\) - Calculate \(i(1+i) = i + i^2 = i - 1\) - Thus, \(-2i - (i - 1) = -2i - i + 1 = 1 - 3i\) - Therefore, the second term becomes \(-(1-i)(1-3i) = -(1 - 3i + i - 3i^2) = -(1 - 3i + i + 3) = -4 + 2i\) 3. **Third term**: \[ i \left( (1-i)(1+i) - i(i) \right) \] - Calculate \((1-i)(1+i) = 1 - i^2 = 1 + 1 = 2\) - Calculate \(i(i) = i^2 = -1\) - Thus, \(2 - (-1) = 2 + 1 = 3\) - Therefore, the third term becomes \(i \cdot 3 = 3i\) ### Step 4: Combine all terms Now we combine all the terms: \[ D = 2 + (-4 + 2i) + 3i = 2 - 4 + 2i + 3i = -2 + 5i \] ### Final Result Thus, the determinant of the given matrix is: \[ \boxed{-2 + 5i} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

3i(1-i) ?

If i= sqrt(-1) , prove that following (x+1+ i) (x + 1- i) (x-1 + i) (x-1-i)= x^(4) + 4

Convert the following in the form of (a+ib) : (i) (1+i)^(4) (ii) (-3+(1)/(2)i)^(3) (iii) (1-i)(3+4i) (iv) (1+i)(1+ 2i)(1+ 3i) (v) (3+5i)/(6-i) (vi) ((2+3i)^(2))/(2+i) (vii) ((1+ i)(2+i))/((3+i)) (viii) (2-i)^(-3)

For i^2= -1, (1 - 3i)^3= ?

The sum of i-2-3i+4 up to 100 terms, where i=sqrt(-1) is 50(1-i) b. 25 i c. 25(1+i) d. 100(1-i)

The reflection of the complex number (2-i)/(3+i) , (where i=sqrt(-1) in the straight line z(1+i)= bar z (i-1) is (-1-i)/2 (b) (-1+i)/2 (i(i+1))/2 (d) (-1)/(1+i)

Express the following complex numbers in the standard form. Also find their conjugate: (i) (1-i)/(1+i) (ii) ((1-i)^2)/(3-i)

If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]

Solve the equation ((1+i) x-2i)/(3+i)+ ((2-3i )y + i)/(3-i)=i, x y in R, i= sqrt(-1)

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. |(1+i, 1-i, i), (1-i, i, 1+i), (i, 1+i, 1-i)|=

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |