Home
Class 12
MATHS
If omega is a cube root of unity , the...

If `omega` is a cube root of unity , then `|(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)|` =

A

`x^3 + 1`

B

`x^3+omega `

C

`x^3+omega^2`

D

`x^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given in the question, we will follow a systematic approach. The determinant we need to evaluate is: \[ D = \begin{vmatrix} x + 1 & \omega & \omega^2 \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] ### Step 1: Use properties of cube roots of unity Recall that \( \omega \) is a cube root of unity, which means: \[ 1 + \omega + \omega^2 = 0 \quad \text{and} \quad \omega^3 = 1 \] ### Step 2: Simplify the determinant We can simplify the determinant by performing column operations. Let's add all three columns together: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \begin{vmatrix} (x + 1) + \omega + \omega^2 & \omega & \omega^2 \\ \omega + (x + \omega^2) + 1 & x + \omega^2 & 1 \\ \omega^2 + 1 + (x + \omega) & 1 & x + \omega \end{vmatrix} \] Now, using \( 1 + \omega + \omega^2 = 0 \): \[ D = \begin{vmatrix} x & \omega & \omega^2 \\ x & x + \omega^2 & 1 \\ x & 1 & x + \omega \end{vmatrix} \] ### Step 3: Factor out common terms Notice that we can factor \( x \) out of the first column: \[ D = x \begin{vmatrix} 1 & \omega & \omega^2 \\ 1 & x + \omega^2 & 1 \\ 1 & 1 & x + \omega \end{vmatrix} \] ### Step 4: Evaluate the 3x3 determinant Now we need to evaluate the determinant: \[ D' = \begin{vmatrix} 1 & \omega & \omega^2 \\ 1 & x + \omega^2 & 1 \\ 1 & 1 & x + \omega \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ D' = 1 \cdot ((x + \omega^2)(x + \omega) - 1 \cdot \omega^2) - \omega \cdot (1 \cdot (x + \omega) - 1 \cdot 1) + \omega^2 \cdot (1 \cdot 1 - 1 \cdot (x + \omega^2)) \] ### Step 5: Simplify the expression Calculating each term: 1. First term: \( (x + \omega^2)(x + \omega) - \omega^2 = x^2 + x\omega + x\omega^2 + \omega^2\omega - \omega^2 \) 2. Second term: \( -\omega(x + \omega - 1) \) 3. Third term: \( \omega^2(1 - (x + \omega^2)) \) Combining these will yield a polynomial in \( x \). ### Step 6: Final result After simplifying, we will find that: \[ D = x^3 \] Thus, the value of the determinant is: \[ \boxed{x^3} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then omega^(3) = ……

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =

If omega is a cube root of unity, then Root of polynomial is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If 1.omega, omega^2 are the roots of unity, then Delta=|(1,omega^n,omega^(2n)),(omega^n,omega^(2n),1),(omega^(2n),1,omega^n)| is equal to

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If omega is a cube root of unity , then |(x+1 , omega , omega^2),(o...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |