Home
Class 12
MATHS
If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=...

If `A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)|` , then which relation is correct :

A

A=B

B

A=C

C

B=C

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( A \), \( B \), and \( C \) given as: \[ A = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}, \quad B = \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix}, \quad C = \begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} \] ### Step 1: Calculate Determinant \( A \) To calculate \( A \), we can use the properties of determinants. We can expand \( A \) using the first row: \[ A = 1 \cdot \begin{vmatrix} b & c \\ b^3 & c^3 \end{vmatrix} - 1 \cdot \begin{vmatrix} a & c \\ a^3 & c^3 \end{vmatrix} + 1 \cdot \begin{vmatrix} a & b \\ a^3 & b^3 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} b & c \\ b^3 & c^3 \end{vmatrix} = bc^3 - cb^3 = b(c^3 - b^2c) \] \[ \begin{vmatrix} a & c \\ a^3 & c^3 \end{vmatrix} = ac^3 - ca^3 = a(c^3 - a^2c) \] \[ \begin{vmatrix} a & b \\ a^3 & b^3 \end{vmatrix} = ab^3 - ba^3 = a(b^3 - a^2b) \] Thus, we can express \( A \): \[ A = b(c^3 - b^2c) - a(c^3 - a^2c) + a(b^3 - a^2b) \] ### Step 2: Calculate Determinant \( B \) Next, we calculate \( B \): \[ B = \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} \] Using the same expansion method: \[ B = 1 \cdot \begin{vmatrix} b^2 & c^2 \\ b^3 & c^3 \end{vmatrix} - 1 \cdot \begin{vmatrix} a^2 & c^2 \\ a^3 & c^3 \end{vmatrix} + 1 \cdot \begin{vmatrix} a^2 & b^2 \\ a^3 & b^3 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} b^2 & c^2 \\ b^3 & c^3 \end{vmatrix} = b^2c^3 - c^2b^3 = b^2(c^3 - b c^2) \] \[ \begin{vmatrix} a^2 & c^2 \\ a^3 & c^3 \end{vmatrix} = a^2c^3 - c^2a^3 = a^2(c^3 - a c^2) \] \[ \begin{vmatrix} a^2 & b^2 \\ a^3 & b^3 \end{vmatrix} = a^2b^3 - b^2a^3 = a^2(b^3 - a b^2) \] Thus, we can express \( B \): \[ B = b^2(c^3 - b c^2) - a^2(c^3 - a c^2) + a^2(b^3 - a b^2) \] ### Step 3: Calculate Determinant \( C \) Finally, we calculate \( C \): \[ C = \begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} \] Using the same expansion method: \[ C = a \begin{vmatrix} b^2 & c^2 \\ b^3 & c^3 \end{vmatrix} - b \begin{vmatrix} a^2 & c^2 \\ a^3 & c^3 \end{vmatrix} + c \begin{vmatrix} a^2 & b^2 \\ a^3 & b^3 \end{vmatrix} \] The calculations for the 2x2 determinants are the same as before. Thus, we can express \( C \): \[ C = a \cdot b^2(c^3 - b c^2) - b \cdot a^2(c^3 - a c^2) + c \cdot a^2(b^3 - a b^2) \] ### Conclusion After calculating the determinants \( A \), \( B \), and \( C \), we can analyze their relationships. The relationships can be summarized as follows: - \( A \) and \( C \) have a direct relationship. - \( B \) does not have a direct relationship with \( A \) or \( C \). Thus, the correct relation is that \( C \) is proportional to \( A \), but there is no direct relationship between \( A \) and \( B \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following |(1, 1, 1),(a^2,b^2,c^2),(a^3,b^3,c^3)|

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a b+b c+c a) .

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc^2,c^2+ra^2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

If Delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

Factorize the following |[3,a+b+c,a^3+b^3+c^3],[a+b+c,a^2+b^2+c^2,a^4+b^4+c^4],[a^2+b^2+c^2,a^3+b^3+c^3,a^5+b^5+c^5]|

if D_1=|{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3):}| and D_2=|{:(a_1+2a_2+3a_3,2a_3,5a_2),(b_1+2b_2+3b_3,2b_3, 5b_2),(c_1+2c_2 + 3c_3 , 2c_3 , 5c_2):}| then D_2/D_1 is equal to :

Prove that (a^8+b^8+c^8)/(a^3b^3c^3)>1/a+1/b+1/c

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |