Home
Class 12
MATHS
Evaluate the following: |[b+c, a-b, a],...

Evaluate the following: ` |[b+c, a-b, a],[c+a, b-c, b],[a+b, c-a, c]| `

A

`a^3+b^3 + c^3 -3abc`

B

`3abc-a^3-b^3-c^3`

C

`a^3+b^3 + c^3 -a^2b-b^2c-c^2a`

D

`(a+b+c)(a^2+b^2+c^2+ab+bc+ca)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ D = \begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix} \] we will follow these steps: ### Step 1: Apply Column Operations We will perform column operations to simplify the determinant. Specifically, we will add the third column to the first column and subtract the third column from the second column. 1. **Column 1**: \( C_1 \leftarrow C_1 + C_3 \) 2. **Column 2**: \( C_2 \leftarrow C_2 - C_3 \) After performing these operations, the determinant becomes: \[ D = \begin{vmatrix} b+c + a & (a-b) - a & a \\ c+a + b & (b-c) - b & b \\ a+b + c & (c-a) - c & c \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} b+c+a & -b & a \\ c+a+b & -c & b \\ a+b+c & -a & c \end{vmatrix} \] ### Step 2: Factor Out Common Terms Notice that the first column can be factored out since \( b+c+a \) is common in all rows: \[ D = (b+c+a) \begin{vmatrix} 1 & -b & a \\ 1 & -c & b \\ 1 & -a & c \end{vmatrix} \] ### Step 3: Evaluate the 3x3 Determinant Now we need to evaluate the determinant: \[ D' = \begin{vmatrix} 1 & -b & a \\ 1 & -c & b \\ 1 & -a & c \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we can expand along the first row: \[ D' = 1 \cdot \begin{vmatrix} -c & b \\ -a & c \end{vmatrix} - (-b) \cdot \begin{vmatrix} 1 & b \\ 1 & c \end{vmatrix} + a \cdot \begin{vmatrix} 1 & -c \\ 1 & -a \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} -c & b \\ -a & c \end{vmatrix} = (-c)(c) - (b)(-a) = -c^2 + ab\) 2. \(\begin{vmatrix} 1 & b \\ 1 & c \end{vmatrix} = (1)(c) - (1)(b) = c - b\) 3. \(\begin{vmatrix} 1 & -c \\ 1 & -a \end{vmatrix} = (1)(-a) - (1)(-c) = -a + c\) Putting it all together: \[ D' = -c^2 + ab + b(c - b) + a(-a + c) \] ### Step 4: Simplify the Expression Now we simplify: \[ D' = -c^2 + ab + bc - b^2 - a^2 + ac \] ### Step 5: Combine Terms Rearranging gives: \[ D' = ab + ac + bc - a^2 - b^2 - c^2 \] ### Step 6: Final Expression for D Thus, we have: \[ D = (b+c+a)(ab + ac + bc - a^2 - b^2 - c^2) \] ### Final Result The final result is: \[ D = (b+c+a)(ab + ac + bc - a^2 - b^2 - c^2) \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: |[1,a, b c],[1,b, c a],[1,c, a b]|

Evaluate the following: |[a, b+c, a^2],[b, c+a, b^2],[c, a+b c^2]|

Evaluate the following: |[a,b,c],[a^2, b^2, c^2],[a^3, b^3, c^3]|

Show that |[b-c,c-a, a-b],[ c-a, a-b,b-c],[ a-b,b-c,c-a]| = 0 .

Write the value of the following determinant |(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c)|

Prove the identities: |[a, b-c,c-b],[ a-c, b, c-a],[ a-b,b-a, c]| =(a+b-c)(b+c-a)(c+a-b)

Prove: |[b+c ,a-b ,a], [c+a, b-c ,b], [a+b, c-a, c]|=3a b c-a^3-b^3-c^3

The product of all values of t , for which the system of equations (a-t)x+b y+c z=0,b x+(c-t)y+a z=0,c x+a y+(b-t)z=0 has non-trivial solution, is (a) |[a, -c, -b], [-c, b, -a], [-b, -a, c]| (b) |[a, b, c], [b, c, a], [c, a, b]| (c) |[a, c, b], [b, a, c], [c, b, a]| (d) |[a, a+b, b+c], [b, b+c, c+a], [c, c+a, a+b]|

Prove the identities: |[a, b, c],[ a-b,b-c,c-a],[ b+c,c+a, a+b]|=a^3+b^3+c^3-3a b c

Without expanding or evaluating show that |[0 , b-a , c-a] , [a-b , 0 , c-b] , [a-c , b-c , 0]|=0

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. Evaluate the following: |[b+c, a-b, a],[c+a, b-c, b],[a+b, c-a, c]|

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |