Home
Class 12
MATHS
For the matrix A=[{:(1,1,0),(1,2,1),(2,1...

For the matrix `A=[{:(1,1,0),(1,2,1),(2,1,0):}]`, which of the following is correct ?

A

`A^3+3A^2 -I=0`

B

`A^3-3A^2 -I=0`

C

`A^3+2A^2 -I=0`

D

`A^3 -A^2 + I=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and determine the correct statement among the provided options. The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix} \] We will find the characteristic polynomial of the matrix \( A \) by calculating the determinant of \( A - \lambda I \), where \( \lambda \) is the eigenvalue and \( I \) is the identity matrix. ### Step 1: Set up \( A - \lambda I \) The identity matrix \( I \) for a \( 3 \times 3 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \( \lambda I \) is: \[ \lambda I = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \] Now, we can compute \( A - \lambda I \): \[ A - \lambda I = \begin{pmatrix} 1 - \lambda & 1 & 0 \\ 1 & 2 - \lambda & 1 \\ 2 & 1 & 0 - \lambda \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A - \lambda I \) To find the determinant, we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A - \lambda I \): \[ \text{det}(A - \lambda I) = (1 - \lambda) \left( (2 - \lambda)(-\lambda) - (1)(1) \right) - (1) \left( (1)(-\lambda) - (1)(2) \right) + (0) \left( (1)(1) - (2 - \lambda)(2) \right) \] Calculating the determinant step-by-step: 1. Calculate \( (2 - \lambda)(-\lambda) - 1 \): \[ = -\lambda(2 - \lambda) - 1 = -2\lambda + \lambda^2 - 1 \] 2. Calculate \( (1)(-\lambda) - (1)(2) \): \[ = -\lambda - 2 \] Now substituting back into the determinant formula: \[ \text{det}(A - \lambda I) = (1 - \lambda)(\lambda^2 - 2\lambda - 1) + \lambda + 2 \] ### Step 3: Expand and simplify Expanding \( (1 - \lambda)(\lambda^2 - 2\lambda - 1) \): \[ = \lambda^2 - 2\lambda - 1 - \lambda^3 + 2\lambda^2 + \lambda \] Combining like terms: \[ = -\lambda^3 + 3\lambda^2 + 1 \] ### Step 4: Set the characteristic polynomial to zero The characteristic polynomial is: \[ -\lambda^3 + 3\lambda^2 + 1 = 0 \] This can be rewritten as: \[ \lambda^3 - 3\lambda^2 - 1 = 0 \] ### Conclusion The characteristic polynomial is \( \lambda^3 - 3\lambda^2 - 1 = 0 \). Based on the video transcript, the correct option is: **Option 2 is correct.**
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

If A=[(0,-1),(1,0)] , then which one of the following statements is not correct ?

Matrix [{:(1,0),(0,1):}] is :

(i) Show that the matrix A=[{:(1,-1,5),(-1,2,1),(5,1,3):}] is a symmetric matrix. (ii) Show that the matrix A-[{:(0 ,1,-1),(-1, 2, 1),( 1,-1, 0):}] is a skew symmetric matrix.

Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A .

find the transpore of matrix A=[{:(2,0),(-1,4):}].

find the transpose of the matrix A=[{:(1,3,-4),(0,2,1):}].

Consider the following statements Statement 1: The range of log_(1)(1/(1+x^(2))) is (-oo,oo) Statement 2: If 0ltxle1 , then log_(1)=xepsilon(-oo,0] Which of the following is correct

the matrix [(0,1),(1,0)] is the matrix reflection in the line

Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by using elementary row transformations.

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. For the matrix A=[{:(1,1,0),(1,2,1),(2,1,0):}], which of the following...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |