Home
Class 12
MATHS
If A=[{:(3,-5),(-4,2):}] then find A^(2)...

If `A=[{:(3,-5),(-4,2):}]` then find `A^(2)-5A- 14I`. Hence, obtain `A^(3)`.

A

I

B

14I

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^2 - 5A - 14I \) where \( A = \begin{pmatrix} 3 & -5 \\ -4 & 2 \end{pmatrix} \) and \( I \) is the identity matrix of the same size. Then we will use the result to find \( A^3 \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & -5 \\ -4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & -5 \\ -4 & 2 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First element: \( 3 \cdot 3 + (-5) \cdot (-4) = 9 + 20 = 29 \) - Second element: \( 3 \cdot (-5) + (-5) \cdot 2 = -15 - 10 = -25 \) - Third element: \( -4 \cdot 3 + 2 \cdot (-4) = -12 - 8 = -20 \) - Fourth element: \( -4 \cdot (-5) + 2 \cdot 2 = 20 + 4 = 24 \) Thus, \[ A^2 = \begin{pmatrix} 29 & -25 \\ -20 & 24 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Now, we calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 3 & -5 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} 15 & -25 \\ -20 & 10 \end{pmatrix} \] ### Step 3: Calculate \( 14I \) The identity matrix \( I \) for a \( 2 \times 2 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \[ 14I = 14 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 14 & 0 \\ 0 & 14 \end{pmatrix} \] ### Step 4: Calculate \( A^2 - 5A - 14I \) Now we can substitute \( A^2 \), \( 5A \), and \( 14I \) into the expression: \[ A^2 - 5A - 14I = \begin{pmatrix} 29 & -25 \\ -20 & 24 \end{pmatrix} - \begin{pmatrix} 15 & -25 \\ -20 & 10 \end{pmatrix} - \begin{pmatrix} 14 & 0 \\ 0 & 14 \end{pmatrix} \] Calculating this step by step: 1. First, subtract \( 5A \) from \( A^2 \): \[ \begin{pmatrix} 29 & -25 \\ -20 & 24 \end{pmatrix} - \begin{pmatrix} 15 & -25 \\ -20 & 10 \end{pmatrix} = \begin{pmatrix} 29 - 15 & -25 - (-25) \\ -20 - (-20) & 24 - 10 \end{pmatrix} = \begin{pmatrix} 14 & 0 \\ 0 & 14 \end{pmatrix} \] 2. Now subtract \( 14I \): \[ \begin{pmatrix} 14 & 0 \\ 0 & 14 \end{pmatrix} - \begin{pmatrix} 14 & 0 \\ 0 & 14 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] Thus, \[ A^2 - 5A - 14I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Step 5: Conclusion for \( A^2 - 5A - 14I \) The result is the zero matrix, which corresponds to option 3. ### Step 6: Find \( A^3 \) Since we know that \( A^2 - 5A - 14I = 0 \), we can rearrange this to find \( A^2 \): \[ A^2 = 5A + 14I \] Now, to find \( A^3 \): \[ A^3 = A \cdot A^2 = A \cdot (5A + 14I) = 5A^2 + 14A \] Substituting \( A^2 \): \[ A^3 = 5 \cdot \begin{pmatrix} 29 & -25 \\ -20 & 24 \end{pmatrix} + 14 \cdot \begin{pmatrix} 3 & -5 \\ -4 & 2 \end{pmatrix} \] Calculating \( 5A^2 \): \[ 5A^2 = \begin{pmatrix} 145 & -125 \\ -100 & 120 \end{pmatrix} \] Calculating \( 14A \): \[ 14A = \begin{pmatrix} 42 & -70 \\ -56 & 28 \end{pmatrix} \] Now, adding these two results: \[ A^3 = \begin{pmatrix} 145 & -125 \\ -100 & 120 \end{pmatrix} + \begin{pmatrix} 42 & -70 \\ -56 & 28 \end{pmatrix} = \begin{pmatrix} 145 + 42 & -125 - 70 \\ -100 - 56 & 120 + 28 \end{pmatrix} = \begin{pmatrix} 187 & -195 \\ -156 & 148 \end{pmatrix} \] ### Final Answers 1. \( A^2 - 5A - 14I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \) 2. \( A^3 = \begin{pmatrix} 187 & -195 \\ -156 & 148 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I .

If A=[(3,-5),(-4, 2)] , then find A^2-5A-14 I . .

If A=[(3,-5),(-4, 2)] , find A^2-5A-14 Idot

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-4A+5I=o . Hence Find A^(-1) .

If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

If A=[(3, 1),(-1 ,2)] , show that A^2-5A+7I=O . Hence, find A^(-1) .

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

Show that A=[(-8, 5),( 2, 4)] satisfies the equation A^2+4A-42 I=O . Hence, find A^(-1) .

If A=[(2,-3,5),(3,2,-4),(1,1,-2)] , find A^(-1) and hence solve the system of linear equations: \ 2x-3y+5z=11 ,\ \ 3x+2y-4z=5,\ \ x+y-2z=-3

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If A=[{:(3,-5),(-4,2):}] then find A^(2)-5A- 14I. Hence, obtain A^(3).

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |