Home
Class 12
MATHS
If A=[(1,1),(1,1)] ,then A^(100) is equa...

If `A=[(1,1),(1,1)]` ,then `A^(100)` is equal to

A

`2^100 A`

B

`2^99 A`

C

`2^101A`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{100} \) where \( A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - First row, second column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - Second row, second column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) Thus, \[ A^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \] ### Step 2: Express \( A^2 \) in terms of \( A \) We can factor out 2 from \( A^2 \): \[ A^2 = 2 \cdot A \] ### Step 3: Calculate \( A^3 \) Next, we find \( A^3 \): \[ A^3 = A^2 \cdot A = (2A) \cdot A = 2A^2 \] Substituting \( A^2 = 2A \): \[ A^3 = 2 \cdot (2A) = 2^2 \cdot A \] ### Step 4: Generalize the pattern Continuing this pattern, we can see: - \( A^2 = 2^1 \cdot A \) - \( A^3 = 2^2 \cdot A \) - \( A^4 = 2^3 \cdot A \) In general, we can express \( A^n \) as: \[ A^n = 2^{n-1} \cdot A \] ### Step 5: Calculate \( A^{100} \) Now, we apply this general formula for \( n = 100 \): \[ A^{100} = 2^{100-1} \cdot A = 2^{99} \cdot A \] ### Final Result Thus, the final result is: \[ A^{100} = 2^{99} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] ### Conclusion The answer is \( A^{100} = 2^{99} A \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A = [(1,0),(1/2,1)] , then A^100 is equal to

If A=[(-2,3),(-1,1)] then A^(3) is equal to

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[(1,0,0),(0,1,0),(1,b,0] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}) , then what is A equal to ?

If f(x)=|\(1,x,x+1),(2x,x(x-1),(x+1)x,3x(x-1),x(x-1)(x-2),(x+1)x(x-1))| then f(100) is equal to (A) 0 (B) 1 (C) 100 (D) -100

If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1))|, then f(100) is equal to - (i) 0 (ii) 1 (iii) 100 (iv) -100

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If A=[(1,1),(1,1)] ,then A^(100) is equal to

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |