Home
Class 12
MATHS
The matrix [(2,lambda,-4),(-1,3,4),(1,-2...

The matrix `[(2,lambda,-4),(-1,3,4),(1,-2,-3)]` is non singular , if :

A

`lambda ne -2`

B

`lambda ne 2 `

C

`lambda ne 3`

D

`lambda ne -3`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( \lambda \) for which the matrix \[ A = \begin{pmatrix} 2 & \lambda & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \] is non-singular, we need to find the determinant of the matrix and set it not equal to zero. A matrix is non-singular if its determinant is not equal to zero. ### Step 1: Calculate the Determinant To find the determinant of the matrix \( A \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei-fh) - b(di-fg) + c(dh-eg) \] where \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). For our matrix: - \( a = 2, b = \lambda, c = -4 \) - \( d = -1, e = 3, f = 4 \) - \( g = 1, h = -2, i = -3 \) So, we can calculate: \[ \text{det}(A) = 2(3 \cdot (-3) - 4 \cdot (-2)) - \lambda((-1) \cdot (-3) - 4 \cdot 1) - 4((-1) \cdot (-2) - 3 \cdot 1) \] ### Step 2: Simplify Each Term Now, we simplify each term: 1. Calculate \( 3 \cdot (-3) - 4 \cdot (-2) \): \[ 3 \cdot (-3) = -9 \quad \text{and} \quad 4 \cdot (-2) = -8 \quad \Rightarrow \quad -9 + 8 = -1 \] 2. Calculate \( (-1) \cdot (-3) - 4 \cdot 1 \): \[ (-1) \cdot (-3) = 3 \quad \text{and} \quad 4 \cdot 1 = 4 \quad \Rightarrow \quad 3 - 4 = -1 \] 3. Calculate \( (-1) \cdot (-2) - 3 \cdot 1 \): \[ (-1) \cdot (-2) = 2 \quad \text{and} \quad 3 \cdot 1 = 3 \quad \Rightarrow \quad 2 - 3 = -1 \] ### Step 3: Substitute Back into the Determinant Formula Now we substitute these results back into the determinant formula: \[ \text{det}(A) = 2(-1) - \lambda(-1) - 4(-1) \] This simplifies to: \[ \text{det}(A) = -2 + \lambda + 4 = \lambda + 2 \] ### Step 4: Set the Determinant Not Equal to Zero For the matrix to be non-singular, we need: \[ \lambda + 2 \neq 0 \] This leads to: \[ \lambda \neq -2 \] ### Conclusion Thus, the matrix is non-singular if \( \lambda \) is not equal to \(-2\). ### Final Answer The correct option is: **Option 1: \( \lambda \neq -2 \)**
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

find the real value of x for which the matrix =[(x+1,3,5),(1,x+3,5),(1,3,x+5)] is non-singular.

If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then find lamda

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

The matrix [(5 ,1 ,0), (3 ,-2 ,-4 ), (6 ,-1 ,-2b)] is a singular matrix, if the value of b is ?

The number of values of x for which the matrix A=[(3-x,2,2),(2,4-x,1),(-2,-4,-1-x)] is singular, is

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

Determine the values of x for which the matrix A= [(x+1,-3 ,4),(-5,x+2, 2) ,(4 ,1,x-6)] is singular.

Find the values of x for which matrix [(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)] is singular.

Express the matrix B=[[2,-2,-4],[-1, 3,4],[ 1,-2,-3]] as the sum of a symmetric and skew symmetric matrix.

The rank of the matrix [(1,2,3),(lambda , 2 , 4),(2,-3,1)] is 3 if :

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. The matrix [(2,lambda,-4),(-1,3,4),(1,-2,-3)] is non singular , if :

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |