Home
Class 12
MATHS
If 3A=[-1-2-2 2 1-2x-2y] such that A.A^T...

If `3A=[-1-2-2 2 1-2x-2y]` such that `A.A^T=I` , then which of the following are correct? `x+2y=4` (b) `x-y=1` `x^2+y^2=-3` (d) `x^2+y^2=5`

A

`-3`

B

`-2`

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation provided: Given: \[ 3A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ x & -2 & y \end{bmatrix} \] ### Step 1: Find Matrix A To find matrix \( A \), we divide the given matrix by 3: \[ A = \frac{1}{3} \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ x & -2 & y \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{x}{3} & -\frac{2}{3} & \frac{y}{3} \end{bmatrix} \] ### Step 2: Find A Transpose Now, we find the transpose of matrix \( A \): \[ A^T = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{x}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{y}{3} \end{bmatrix} \] ### Step 3: Calculate \( A \cdot A^T \) Next, we calculate the product \( A \cdot A^T \): \[ A \cdot A^T = \begin{bmatrix} -\frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{x}{3} & -\frac{2}{3} & \frac{y}{3} \end{bmatrix} \cdot \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{x}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{y}{3} \end{bmatrix} \] Calculating each element of the resulting matrix: 1. First row, first column: \[ \left(-\frac{1}{3}\right)\left(-\frac{1}{3}\right) + \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right) + \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right) = \frac{1}{9} + \frac{4}{9} + \frac{4}{9} = \frac{9}{9} = 1 \] 2. First row, second column: \[ \left(-\frac{1}{3}\right)\left(\frac{2}{3}\right) + \left(-\frac{2}{3}\right)\left(\frac{1}{3}\right) + \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right) = -\frac{2}{9} - \frac{2}{9} + \frac{4}{9} = 0 \] 3. First row, third column: \[ \left(-\frac{1}{3}\right)\left(\frac{x}{3}\right) + \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right) + \left(-\frac{2}{3}\right)\left(\frac{y}{3}\right) = -\frac{x}{9} + \frac{4}{9} - \frac{2y}{9} = 0 \] This gives us the equation: \[ -x + 4 - 2y = 0 \implies x + 2y = 4 \quad \text{(1)} \] 4. Second row, second column: \[ \left(\frac{2}{3}\right)\left(-\frac{2}{3}\right) + \left(\frac{1}{3}\right)\left(\frac{1}{3}\right) + \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right) = -\frac{4}{9} + \frac{1}{9} + \frac{4}{9} = 1 \] 5. Second row, third column: \[ \left(\frac{2}{3}\right)\left(\frac{x}{3}\right) + \left(\frac{1}{3}\right)\left(-\frac{2}{3}\right) + \left(-\frac{2}{3}\right)\left(\frac{y}{3}\right) = \frac{2x}{9} - \frac{2}{9} - \frac{2y}{9} = 0 \] This gives us the equation: \[ 2x - 2 - 2y = 0 \implies x - y = 1 \quad \text{(2)} \] 6. Third row, third column: \[ \left(\frac{x}{3}\right)\left(\frac{x}{3}\right) + \left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right) + \left(\frac{y}{3}\right)\left(\frac{y}{3}\right) = \frac{x^2}{9} + \frac{4}{9} + \frac{y^2}{9} = 1 \] This gives us the equation: \[ x^2 + 4 + y^2 = 9 \implies x^2 + y^2 = 5 \quad \text{(3)} \] ### Step 4: Solve the Equations Now we have the following equations: 1. \( x + 2y = 4 \) 2. \( x - y = 1 \) 3. \( x^2 + y^2 = 5 \) From equation (2), we can express \( x \) in terms of \( y \): \[ x = y + 1 \] Substituting \( x \) in equation (1): \[ (y + 1) + 2y = 4 \implies 3y + 1 = 4 \implies 3y = 3 \implies y = 1 \] Substituting \( y = 1 \) back into \( x = y + 1 \): \[ x = 1 + 1 = 2 \] ### Step 5: Verify the Options Now we have \( x = 2 \) and \( y = 1 \). Let's check the options: - (a) \( x + 2y = 4 \): \( 2 + 2(1) = 4 \) (Correct) - (b) \( x - y = 1 \): \( 2 - 1 = 1 \) (Correct) - (c) \( x^2 + y^2 = -3 \): \( 2^2 + 1^2 = 4 + 1 = 5 \) (Incorrect) - (d) \( x^2 + y^2 = 5 \): \( 2^2 + 1^2 = 4 + 1 = 5 \) (Correct) ### Final Answer The correct options are (a), (b), and (d).
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If 3A=[(-1,-2,-2),(2,1,-2),(x,-2,y)] such that A A^T=I , then which of the following are correct? (A) x+2y=4 (B) x-y=1 (C) x^2+y^2=-3 (D) x^2+y^2=5

Find each of the following products: (i) (-5x y)xx(-3x^2y z) (ii) 1/2x y\ xx2/3x^2y z^2

Which of the following pair of graphs intersect? y=x^2-x a and y=1 y=x^2-2x and y=sinx y=x^2-x+1 and y=x-4

x=2, y=−1 is a solution of the linear equation (a) x+2y=0 (b) x+2y=4 (c) 2x+y=0 (d) 2x+y=5

Simplify the following expression: x^2(1-3y^2)+x(x y^2-2x)-3y(y-4x^2y)

Find the angle between the following pairs of lines : (i) x+2y-1=0 and 2x-y+3=0 (ii) y=5x+1 and y=-3x+2

If a function is represented parametrically be the equations x=(1+(log)_e t)/(t^2); y=(3+2(log)_e t)/t , then which of the following statements are true? y^(x-2x y^(prime))=y y y^(prime)=2x(y^(prime))^2+1 x y^(prime)=2y(y^(prime))^2+2 y^(y-4x y^(prime))=(y^(prime))^2

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

For what values of x\ a n d\ y are the following matrices equal? A=[2x+1 2y0y^2-5y] , B=[x+3y^2+2 0-6]

If X and Y are 2xx2 matrices, then solve the following matrix equations for X and Ydot 2X+3Y=[2 3 4 0] , 3X+2Y=[-2 2 1-5]

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If 3A=[-1-2-2 2 1-2x-2y] such that A.A^T=I , then which of the followi...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |