Home
Class 12
MATHS
If A+B+C=pi and e^(itheta)=costheta+isin...

If `A+B+C=pi` and `e^(itheta)=costheta+isintheta` and `z=|[e^(2iA), e^(-iC), e^(-iB)] , [e^(-iC), e^(2iB), e^(-iA)], [e^(-iB), e^(-iA), e^(2iC)]|`, then

A

Re(z)=4

B

Im(z)=0

C

Re(z)=-4

D

Im(z)=1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the modulus of the determinant \( z \) given the conditions \( A + B + C = \pi \) and the expression for \( z \). ### Step 1: Write the determinant We start with the determinant: \[ z = \left| \begin{array}{ccc} e^{2iA} & e^{-iC} & e^{-iB} \\ e^{-iC} & e^{2iB} & e^{-iA} \\ e^{-iB} & e^{-iA} & e^{2iC} \end{array} \right| \] ### Step 2: Expand the determinant Using the properties of determinants, we can expand this determinant. The determinant of a 3x3 matrix can be computed using the formula: \[ |M| = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). Applying this to our matrix, we have: \[ z = e^{2iA} \left( e^{2iB} e^{2iC} - e^{-iA} e^{-iB} \right) - e^{-iC} \left( e^{-iC} e^{2iC} - e^{-iA} e^{-iB} \right) + e^{-iB} \left( e^{-iC} e^{-iA} - e^{2iB} e^{-iB} \right) \] ### Step 3: Substitute \( A + B + C = \pi \) Since \( A + B + C = \pi \), we can substitute \( C = \pi - A - B \) into the expressions for \( e^{iA}, e^{iB}, \) and \( e^{iC} \). ### Step 4: Simplify the terms Using Euler's formula \( e^{i\theta} = \cos(\theta) + i\sin(\theta) \), we can simplify the terms: - \( e^{2iA} = \cos(2A) + i\sin(2A) \) - \( e^{-iC} = e^{-i(\pi - A - B)} = -e^{i(A + B)} = -(\cos(A + B) + i\sin(A + B)) \) - Similarly for the other terms. ### Step 5: Calculate the determinant After substituting and simplifying, we can calculate the determinant. This will involve combining the terms and using trigonometric identities. ### Step 6: Find the modulus Finally, we need to find the modulus of the determinant \( z \). The modulus of a complex number \( z = x + iy \) is given by: \[ |z| = \sqrt{x^2 + y^2} \] Calculate the real part and the imaginary part from the determinant and then compute the modulus. ### Final Result After performing the calculations, we find that: \[ z = -4 + 0i \] Thus, the modulus is: \[ |z| = \sqrt{(-4)^2 + 0^2} = 4 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, the value of |[e^(-i2A),e^(iC),e^(iB)],[e^(iC),e^(-i2B),e^(iA)],[e^(iB),e^(iA),e^(-i2C)]|

If A , B ,C are angles of a triangle, then the value of |[e^(2i A),e^(-i C),e^(-i B)],[e^(-i C),e^(2i B),e^(-i A)],[e^(-i B),e^(-i A),e^(2i C)]| is (a) 1 (b) -1 (c) -2 (d) -4

If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e^(ipi//4)],[e^(-ipi//3),1,e^(i2pi//3)],[e^(-ipi//4),e^(-i2pi//3),1]|

If e^(itheta)=costheta+is intheta, find the value of |1e^(ipi//3)e^(ipi//4)e^(-ipi//3)1e^(i2pi//3)e^(-ipi//4)e^(-i2pi//3)1|

If alpha + beta + gamma = pi , then the value of the determinant |(e^(2i alpha),e^(-i gamma),e^(-i beta)),(e^(-i gamma),e^(2i beta),e^(-i alpha)),(e^(-i beta),e^(-i alpha),e^(2i gamma))| , is

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r sintheta)

Statement-1 : If e^(itheta)=cos theta +isintheta and the value of e^(iA).e^(iB).e^(iC) is equal to -1, where A,B,C are the angles of a triangle. and Statement -2 : In any triangleABC , A + B +C = 180^(@)

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r s inthetadot)

The value of x satisfying the equation cos(lnx)=0, is (A) e^(pi//2) (B) e^(-(2009)pi//2) (C) e^(1000pi) (D) e^(-3pi//2)

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If A+B+C=pi and e^(itheta)=costheta+isintheta and z=|[e^(2iA), e^(-iC)...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |