Home
Class 12
MATHS
If Delta = |(f(x),f(1/x)+f(x)), (1,f(1/x...

If `Delta = |(f(x),f(1/x)+f(x)), (1,f(1/x))|=0` where it is given `f(x) = a + bx^n` and `f(2) = 17` and `f(5) = K` then `K-620=`

A

126

B

326

C

428

D

626

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given determinant: \[ \Delta = \begin{vmatrix} f(x) & f(1/x) + f(x) \\ 1 & f(1/x) \end{vmatrix} = 0 \] ### Step 1: Calculate the determinant The determinant of a 2x2 matrix is calculated as follows: \[ \Delta = f(x) \cdot f(1/x) - (1) \cdot (f(1/x) + f(x)) \] This simplifies to: \[ \Delta = f(x) \cdot f(1/x) - f(1/x) - f(x) \] ### Step 2: Set the determinant to zero Since we know that \(\Delta = 0\), we can set the equation to zero: \[ f(x) \cdot f(1/x) - f(1/x) - f(x) = 0 \] Rearranging gives us: \[ f(x) \cdot f(1/x) = f(1/x) + f(x) \] ### Step 3: Substitute the function \(f(x)\) Given \(f(x) = a + bx^n\), we can find \(f(1/x)\): \[ f(1/x) = a + b(1/x)^n = a + \frac{b}{x^n} \] Now substituting \(f(x)\) and \(f(1/x)\) into the equation: \[ (a + bx^n) \left(a + \frac{b}{x^n}\right) = \left(a + \frac{b}{x^n}\right) + (a + bx^n) \] ### Step 4: Expand both sides Expanding the left side: \[ (a + bx^n) \left(a + \frac{b}{x^n}\right) = a^2 + a\frac{b}{x^n} + abx^n + b^2 \] And the right side: \[ \left(a + \frac{b}{x^n}\right) + (a + bx^n) = 2a + \frac{b}{x^n} + bx^n \] ### Step 5: Equate and simplify Setting both sides equal gives us: \[ a^2 + a\frac{b}{x^n} + abx^n + b^2 = 2a + \frac{b}{x^n} + bx^n \] ### Step 6: Collect like terms Rearranging the equation leads to: \[ a^2 + b^2 + (ab - 2a) + \left(a - 1\right)\frac{b}{x^n} + \left(ab - b\right)x^n = 0 \] This must hold for all \(x\), which means the coefficients of \(x^n\) and \(\frac{1}{x^n}\) must separately equal zero. ### Step 7: Solve for \(a\) and \(b\) From the constant term, we have: 1. \(a^2 + b^2 - 2a = 0\) 2. \(ab - b = 0\) From the second equation, we can factor out \(b\): \[ b(a - 1) = 0 \] So either \(b = 0\) or \(a = 1\). If \(b = 0\), then \(f(x) = a\), which contradicts \(f(2) = 17\). Thus, \(a = 1\). Substituting \(a = 1\) into the first equation gives: \[ 1 + b^2 - 2 = 0 \implies b^2 = 1 \implies b = 1 \text{ or } b = -1 \] ### Step 8: Determine \(f(x)\) If \(b = 1\), then \(f(x) = 1 + x^n\). If \(b = -1\), then \(f(x) = 1 - x^n\). Using \(f(2) = 17\): 1. For \(f(x) = 1 + x^n\): \[ 1 + 2^n = 17 \implies 2^n = 16 \implies n = 4 \] 2. For \(f(x) = 1 - x^n\): \[ 1 - 2^n = 17 \implies -2^n = 16 \text{ (not possible)} \] Thus, \(f(x) = 1 + x^4\). ### Step 9: Find \(f(5)\) Now, we compute \(f(5)\): \[ f(5) = 1 + 5^4 = 1 + 625 = 626 \] ### Step 10: Calculate \(K - 620\) Finally, we find \(K - 620\): \[ K - 620 = 626 - 620 = 6 \] Thus, the final answer is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuous differentiable function with f'(x) !=0 and satisfies f(0)=1 and f'(0)=2 , then f(x)=e^(lambda x)+k , then lambda+k is equal to ..........

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously differentiable function with f'(x)ne0 and satisfies f(0) = 1 and f'(0) = 2 then lim_(xrarr0) (f(x)-1)/(x) is

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

If f(x)=2^(x),"then"f(0),f(1),f(2)..."are in"

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 is continuously differentiable function with f^(prime)(x)!=0 and satisfies f(0)=1 and f'(0)=2 then (lim)_(x->0)(f(x)-1)/x is 1//2 b. 1 c. 2 d. 0

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. If Delta = |(f(x),f(1/x)+f(x)), (1,f(1/x))|=0 where it is given f(x) =...

    Text Solution

    |

  2. If A and B are square martrices of equal degree, then which one is co...

    Text Solution

    |

  3. If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  6. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  7. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  8. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |

  11. The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

    Text Solution

    |

  12. Consider the set A of all matrices of order 3 xx 3 with entries 0 or 1...

    Text Solution

    |

  13. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  14. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  15. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  16. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  17. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  18. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  19. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  20. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  21. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |