Home
Class 12
MATHS
If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)]...

If `A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)]`, then

A

|A|=-1

B

adjA=`[(-1,1,-2),(0,-3,-1),(0,0,1//3)]`

C

`A=[(1,1//3,7),(0,1//3,1),(0,0,-3)]`

D

`A=[(1,-1//3,-7),(0,-3,0),(0,0,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \), the determinant of \( A \), and the adjoint of \( A \) given that \( A^{-1} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} \). ### Step 1: Find the matrix \( A \) We know that: \[ A = (A^{-1})^{-1} \] To find \( A \), we can multiply \( A^{-1} \) by the identity matrix \( I \): \[ A = I \cdot A^{-1} \] The identity matrix \( I \) for a 3x3 matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Now we will multiply \( I \) with \( A^{-1} \): \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} \] Using matrix multiplication: \[ A = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 & 1 \cdot -1 + 0 \cdot 3 + 0 \cdot 0 & 1 \cdot 2 + 0 \cdot 1 + 0 \cdot -\frac{1}{3} \\ 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 & 0 \cdot -1 + 1 \cdot 3 + 0 \cdot 0 & 0 \cdot 2 + 1 \cdot 1 + 0 \cdot -\frac{1}{3} \\ 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 & 0 \cdot -1 + 0 \cdot 3 + 1 \cdot 0 & 0 \cdot 2 + 0 \cdot 1 + 1 \cdot -\frac{1}{3} \end{pmatrix} \] Calculating each entry: \[ A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} \] ### Step 2: Find the determinant of \( A \) To find the determinant of \( A \), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). For our matrix: \[ A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} \] Calculating the determinant: \[ \text{det}(A) = 1 \left( 3 \cdot -\frac{1}{3} - 1 \cdot 0 \right) - (-1) \left( 0 \cdot -\frac{1}{3} - 1 \cdot 0 \right) + 2 \left( 0 \cdot 0 - 3 \cdot 0 \right) \] This simplifies to: \[ \text{det}(A) = 1 \cdot (-1) - (-1) \cdot 0 + 2 \cdot 0 = -1 \] ### Step 3: Find the adjoint of \( A \) The adjoint of a matrix \( A \) can be found using the formula: \[ \text{adj}(A) = \text{det}(A) \cdot A^{-1} \] We already have \( \text{det}(A) = -1 \) and \( A^{-1} \): \[ A^{-1} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} \] Now we multiply \( -1 \) with each element of \( A^{-1} \): \[ \text{adj}(A) = -1 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \] ### Final Answers 1. The matrix \( A \) is: \[ A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} \] 2. The determinant \( \text{det}(A) \) is: \[ \text{det}(A) = -1 \] 3. The adjoint \( \text{adj}(A) \) is: \[ \text{adj}(A) = \begin{pmatrix} -1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)]

If [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}] =A, then find the value of A.

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

Show that two matrices A=[(1,-1,0),(2,1,1)] and B=[(3,0,1),(0,3,1)] are row equivalent.

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -LEVEL 2
  1. If A(theta)=[(sin theta, i cos theta),(i cos theta, sin theta)], then ...

    Text Solution

    |

  2. If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

    Text Solution

    |

  3. If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)], then

    Text Solution

    |

  4. Which of the following statements is/are true about square matrix A or...

    Text Solution

    |

  5. If A, B, and C are three square matrices of the same order, then AB=AC...

    Text Solution

    |

  6. Suppose a1, a, are real numbers, with a1!=0. If a1, a2,a3, are in A....

    Text Solution

    |

  7. Let A=[(1,0),(1,1)] . Then which of the following is not true ?

    Text Solution

    |

  8. If C is skew-symmetric matrix of order n and X isnxx1 column matrix, t...

    Text Solution

    |

  9. If S=[(0,1,1),(1,0,1),(1,1,0)]a n dA=[(b+c,c+a,b-c),(c-b,c+b, a-b),(b-...

    Text Solution

    |

  10. If A B=A and B A=B , then show that A^2=A , B^2=B .

    Text Solution

    |

  11. Let K be a positive real number and A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt...

    Text Solution

    |

  12. Let A=a0 be a matrix of order 3, where a(i j)=x ; ifi=j ,x in R, 1 if...

    Text Solution

    |

  13. Let M and N be two 3xx3 nonsingular skew-symmetric matrices such that ...

    Text Solution

    |

  14. For 3xx3 matrices M \ a n d \ N , which of the following statement (s)...

    Text Solution

    |

  15. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  16. Let A and B be two nonsingular square matrices, A^(T) and B^(T) are th...

    Text Solution

    |

  17. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  18. If A^(-1)=[(sin^(2)alpha, 0, 0),(0, sin^(2)beta,0),(0, 0,sin^(2)gamma)...

    Text Solution

    |

  19. A is even ordered non singular symmetric matrix and B is even ordered ...

    Text Solution

    |

  20. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |