Home
Class 12
MATHS
A is even ordered non singular symmetric...

A is even ordered non singular symmetric matrix and B is even ordered non singular skew symmetric matrix such that AB = BA, then `A^3B^3(B'A)^(-1)(A^(-1)B^(-1))'` AB is equal to :

A

`A^2B^2`

B

`B^2A^2`

C

`-A^2B^2`

D

`-B^2A^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to simplify the expression \( A^3 B^3 (B'A)^{-1} (A^{-1} B^{-1})' AB \). ### Step 1: Understand the properties of matrices Given: - \( A \) is a symmetric matrix: \( A' = A \) - \( B \) is a skew-symmetric matrix: \( B' = -B \) - \( AB = BA \) ### Step 2: Rewrite the expression We start with the expression: \[ A^3 B^3 (B'A)^{-1} (A^{-1} B^{-1})' AB \] Substituting the properties of \( A \) and \( B \): \[ = A^3 B^3 (-BA)^{-1} (A^{-1} (-B))' AB \] ### Step 3: Simplify \( (B'A)^{-1} \) Since \( B' = -B \): \[ (B'A)^{-1} = (-BA)^{-1} = -A^{-1} B^{-1} \] ### Step 4: Simplify \( (A^{-1} B^{-1})' \) Using the property of transpose: \[ (A^{-1} B^{-1})' = (B^{-1})' (A^{-1})' = (-B^{-1}) A^{-1} \] ### Step 5: Substitute back into the expression Now substituting back: \[ = A^3 B^3 (-A^{-1} B^{-1}) (-B^{-1} A^{-1}) AB \] This simplifies to: \[ = A^3 B^3 A^{-1} B^{-1} B^{-1} A^{-1} AB \] \[ = A^3 B^3 A^{-1} B^{-2} A^{-1} AB \] ### Step 6: Simplify \( A^3 A^{-1} \) Using the property of inverses: \[ = A^2 B^3 B^{-2} AB \] ### Step 7: Simplify \( B^3 B^{-2} \) This simplifies to: \[ = A^2 B AB \] ### Step 8: Use the commutative property of \( A \) and \( B \) Since \( AB = BA \): \[ = A^2 B^2 A \] ### Step 9: Final simplification Thus, we can write: \[ = A^2 B^2 \] or equivalently: \[ = B^2 A^2 \] ### Final Answer The expression simplifies to: \[ A^2 B^2 \quad \text{or} \quad B^2 A^2 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A is a symmetric matrix and B is a skew-symmetric matrix such that A + B = [{:(2,3),(5,-1):}] , then AB is equal to

If A is a symmetric matrix and B is a skew-symmetric matrix such that A + B = [{:(2,3),(5,-1):}] , then AB is equal to

Let A and B be symmetric matrices of same order. Then AB-BA is a skew symmetric matrix

If A and B are non-singular symmetric matrices such that AB=BA , then prove that A^(-1) B^(-1) is symmetric matrix.

If A and B are symmetric matrices, prove that AB BA is a skew symmetric matrix.

If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix.

Let A be a skew-symmetric matrix of even order, then absA

If A is a non-singular symmetric matrix, write whether A^(-1) is symmetric or skew-symmetric.

If A and B are symmetric matrices of the same order, show that AB+BA is symmetric.

Let A be a non - singular matrix of order 3 such that Aadj (3A)=5A A^(T) , then root3(|A^(-1)|) is equal to

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -LEVEL 2
  1. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  2. If A^(-1)=[(sin^(2)alpha, 0, 0),(0, sin^(2)beta,0),(0, 0,sin^(2)gamma)...

    Text Solution

    |

  3. A is even ordered non singular symmetric matrix and B is even ordered ...

    Text Solution

    |

  4. If P is a 3xx3 matrix such that P^(T) = 2 P + I , where P^(T) is the...

    Text Solution

    |

  5. Let M and N be two 3xx3 matrices such that MN=NM. Further, if M ne N^(...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Suppose a, b, c, in R and abc = 1, if A = [[3a, b, c ],[b, 3c, a ],[c...

    Text Solution

    |

  8. A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r eIi s...

    Text Solution

    |

  9. If [(a,b),(c,1-a)] is an idempotent matrix and f(x)=x-x^(2) and bc=1//...

    Text Solution

    |

  10. Let x be the solution set of equation A^x=Idot,w h e r eA+[0 1-1 4-3 4...

    Text Solution

    |

  11. A=[(1,tan x),(-tan x,1)] and f(x) is defined as f(x)= det. (A^(T)A^(-1...

    Text Solution

    |

  12. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  13. Let A=[(3x^(2)),(1),(6x)], B=[(a,b,c)], and C=[((x+2)^(2),5x^(2),2x)...

    Text Solution

    |

  14. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  15. Let S be the set which contains all possible values of l, m, n, p, q, ...

    Text Solution

    |

  16. Let alpha,beta,gamma are the real roots of the equation x^3+a x^2+b x+...

    Text Solution

    |

  17. If a1, a2, a3,54,a6,a7, a8, a9 are in H.P., and D=|[a1,a2,a3],[5, 4,a6...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. The sum of roots of the equations |{:(x+2,,2x+3,,3x+4),(2x+3,,3...

    Text Solution

    |

  20. If alpha,beta,gamma are real numbers, then without expanding at any...

    Text Solution

    |