Home
Class 12
MATHS
Prove without expansion that |a h+bgga b...

Prove without expansion that `|a h+bgga b+c h bf+b afh b+b c af+b cc bg+fc|=a|a h+bga h bf+b a h b af+b cgf|`

Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Prove that a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.

If a^2+b^2+c^2-a b-b c-c a=0,\ p rov e\ t h a t\ a=b=c

a ,b ,c x in R^+ such that a ,b ,a n dc are in A.P. and b ,ca n dd are in H.P., then a b=c d b. a c=b d c. b c=a d d. none of these

Through a point A on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines a x^2+2h x y+b y^2=0 at B and Cdot If A B=B C , then (a) h^2=4a b (b) 8h^2=9a b (c) 9h^2=8a b (d) 4h^2=a b

Through a point A (2,0) on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines a x^2+2h x y+b y^2=0 at B and Cdot If A B=B C , then (a) h^2=4a b (b) 8h^2=9a b (c) 9h^2=8a b (d) 4h^2=a b

If a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b) is always

Through a point A on the x-axis, a straight line is drawn parallel to the y-axis so as to meet the pair of straight lines a x^2+2h x y+b y^2=0 at B and Cdot If A B=B C , then h^2=4a b (b) 8h^2=9a b 9h^2=8a b (d) 4h^2=a b

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .

If a,b,c are in H.P. , then

If a, b, c are in AP amd b, c, a are in GP , then show that c, a, b are in H.P. Find a : b : c .

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -LEVEL 2
  1. A=[(1,tan x),(-tan x,1)] and f(x) is defined as f(x)= det. (A^(T)A^(-1...

    Text Solution

    |

  2. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  3. Let A=[(3x^(2)),(1),(6x)], B=[(a,b,c)], and C=[((x+2)^(2),5x^(2),2x)...

    Text Solution

    |

  4. Let A=[a("ij")](3xx3) be a matrix such that A A^(T)=4I and a("ij")+2c(...

    Text Solution

    |

  5. Let S be the set which contains all possible values of l, m, n, p, q, ...

    Text Solution

    |

  6. Let alpha,beta,gamma are the real roots of the equation x^3+a x^2+b x+...

    Text Solution

    |

  7. If a1, a2, a3,54,a6,a7, a8, a9 are in H.P., and D=|[a1,a2,a3],[5, 4,a6...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. The sum of roots of the equations |{:(x+2,,2x+3,,3x+4),(2x+3,,3...

    Text Solution

    |

  10. If alpha,beta,gamma are real numbers, then without expanding at any...

    Text Solution

    |

  11. Prove that |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(...

    Text Solution

    |

  12. Express =|2b c-a^2c^2b^2c^2 2c a-b^2a^2b 62a^2 2a b-c^2| as square of ...

    Text Solution

    |

  13. Prove without expansion that |a h+bgga b+c h bf+b afh b+b c af+b cc bg...

    Text Solution

    |

  14. If y= |[sinx,cosx,sinx],[cosx,-sinx,cosx],[x,1,1]|, find (dy)/(dx)

    Text Solution

    |

  15. If f(x)=|x^nn !2cosxcos(npi)/2 4sinxsin(npi)/2 8| then find the val...

    Text Solution

    |

  16. Show that |{:(bc-a^(2),,ca-b^(2),,ab-c^(2)),(ca-b^(2),,ab-c^(2),,bc-a^...

    Text Solution

    |

  17. Write down 2xx2 matrix A which corresponds to a counterclockwise rota...

    Text Solution

    |

  18. If A , B ,a n dC are the angles of triangle, show that the system o...

    Text Solution

    |

  19. If a x1 2+b y1 2+c z1 2=a x2 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d ,a...

    Text Solution

    |

  20. Let triangle =|[2a1b1, a1b2+a2b1, a1b3+a3b1], [a1b2+a2b1, 2a2b2, a2b3+...

    Text Solution

    |