Home
Class 12
MATHS
Let ar=r(.^7Cr),br=(7-r)(.^7Cr) and Ar=...

Let `a_r=r(.^7C_r),b_r=(7-r)(.^7C_r)` and `A_r=[(a_r,0),(0,b_r)]`. If `A=sum_(r=0)^7 A_r=[(a,0),(0,b)]`, then find the value of a+b .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a + b \) where: - \( a_r = r \cdot {7 \choose r} \) - \( b_r = (7 - r) \cdot {7 \choose r} \) - \( A_r = \begin{pmatrix} a_r & 0 \\ 0 & b_r \end{pmatrix} \) We are given that: \[ A = \sum_{r=0}^{7} A_r = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \] ### Step 1: Calculate \( a \) We start by calculating \( a \): \[ a = \sum_{r=0}^{7} a_r = \sum_{r=0}^{7} r \cdot {7 \choose r} \] Using the identity \( r \cdot {n \choose r} = n \cdot {n-1 \choose r-1} \), we can rewrite the summation: \[ a = \sum_{r=1}^{7} 7 \cdot {6 \choose r-1} \] This can be simplified further: \[ a = 7 \sum_{r=1}^{7} {6 \choose r-1} \] Changing the index of summation, let \( k = r - 1 \): \[ a = 7 \sum_{k=0}^{6} {6 \choose k} = 7 \cdot 2^6 = 7 \cdot 64 = 448 \] ### Step 2: Calculate \( b \) Next, we calculate \( b \): \[ b = \sum_{r=0}^{7} b_r = \sum_{r=0}^{7} (7 - r) \cdot {7 \choose r} \] This can be split into two parts: \[ b = \sum_{r=0}^{7} 7 \cdot {7 \choose r} - \sum_{r=0}^{7} r \cdot {7 \choose r} \] The first summation simplifies to: \[ \sum_{r=0}^{7} 7 \cdot {7 \choose r} = 7 \cdot 2^7 = 7 \cdot 128 = 896 \] We already calculated \( \sum_{r=0}^{7} r \cdot {7 \choose r} = a = 448 \). Thus, \[ b = 896 - 448 = 448 \] ### Step 3: Calculate \( a + b \) Now we can find \( a + b \): \[ a + b = 448 + 448 = 896 \] ### Final Answer The value of \( a + b \) is: \[ \boxed{896} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise LEVEL 2|47 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Let a_r=r^4C_r,b_r=(4-r)^4C_r,A_r=[{:(a_r,2),(3,b_r):}] and A = sum _(r=0)^4A_r then the value of |A| is equal to

If z_r : r=1,2,3, ,50 are the roots of the equation sum_(r=0)^(50)z^r=0 , then find the value of sum_(r=0)^(50)1/(z_r-1)

Let t_(100)=sum_(r=0)^(100)(1)/(("^(100)C_(r ))^(5)) and S_(100)=sum_(r=0)^(100)(r )/(("^(100)C_(r ))^(5)) , then the value of (100t_(100))/(S_(100)) is (a) 1 (b) 2 (c) 3 (d) 4

The value of sum_(r=0)^50 (.^(100)C_r.^(200)C_(150+r)) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of Q + R is equal to

If (1+x+x^2+x^3)^n=sum_(r=0)^(3n)b_r x^r and sum_(r=0)^(3n)b_r=k ,"t h e n"sum_(r=0)^(3n)r b_r is

Find the sum sum_(r=0)^n^(n+r)C_r .