Home
Class 12
MATHS
If A=|{:(,5a,-b),(,3,2):}| and A adj A=A...

If `A=|{:(,5a,-b),(,3,2):}|` and A adj `A=A A^(T)`, then 5a+b is equal to

A

`-1`

B

5

C

4

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we start with the given matrix \( A \) and the condition involving its adjoint. ### Step 1: Define the Matrix A Given: \[ A = \begin{pmatrix} 5a & -b \\ 3 & 2 \end{pmatrix} \] ### Step 2: Use the Property of Adjoint We know that: \[ A \text{ adj } A = \det(A) I_2 \] where \( I_2 \) is the identity matrix of order 2. ### Step 3: Calculate the Determinant of A The determinant of matrix \( A \) is calculated as follows: \[ \det(A) = (5a)(2) - (-b)(3) = 10a + 3b \] ### Step 4: Write the Equation for A adj A Using the property mentioned: \[ A \text{ adj } A = \det(A) I_2 = (10a + 3b) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 10a + 3b & 0 \\ 0 & 10a + 3b \end{pmatrix} \] ### Step 5: Calculate A A^T Next, we need to calculate \( A A^T \): \[ A^T = \begin{pmatrix} 5a & 3 \\ -b & 2 \end{pmatrix} \] Now, calculate \( A A^T \): \[ A A^T = \begin{pmatrix} 5a & -b \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 5a & 3 \\ -b & 2 \end{pmatrix} \] Calculating the elements: - First element: \( 5a \cdot 5a + (-b) \cdot (-b) = 25a^2 + b^2 \) - Second element: \( 5a \cdot 3 + (-b) \cdot 2 = 15a - 2b \) - Third element: \( 3 \cdot 5a + 2 \cdot (-b) = 15a - 2b \) - Fourth element: \( 3 \cdot 3 + 2 \cdot 2 = 9 + 4 = 13 \) Thus, \[ A A^T = \begin{pmatrix} 25a^2 + b^2 & 15a - 2b \\ 15a - 2b & 13 \end{pmatrix} \] ### Step 6: Set the Two Equations Equal From the properties, we have: \[ \begin{pmatrix} 10a + 3b & 0 \\ 0 & 10a + 3b \end{pmatrix} = \begin{pmatrix} 25a^2 + b^2 & 15a - 2b \\ 15a - 2b & 13 \end{pmatrix} \] This gives us two equations: 1. \( 10a + 3b = 25a^2 + b^2 \) 2. \( 10a + 3b = 13 \) ### Step 7: Solve the Second Equation From the second equation: \[ 10a + 3b = 13 \quad \text{(Equation 1)} \] ### Step 8: Substitute into the First Equation Substituting \( 10a + 3b = 13 \) into the first equation: \[ 13 = 25a^2 + b^2 \quad \text{(Equation 2)} \] ### Step 9: Express b in terms of a From Equation 1, we can express \( b \): \[ b = \frac{13 - 10a}{3} \] ### Step 10: Substitute b into Equation 2 Substituting \( b \) into Equation 2: \[ 13 = 25a^2 + \left(\frac{13 - 10a}{3}\right)^2 \] Expanding and simplifying: \[ 13 = 25a^2 + \frac{(13 - 10a)^2}{9} \] Multiply through by 9 to eliminate the fraction: \[ 117 = 225a^2 + (13 - 10a)^2 \] Expanding \( (13 - 10a)^2 \): \[ 117 = 225a^2 + 169 - 260a + 100a^2 \] Combine like terms: \[ 117 = 325a^2 - 260a + 169 \] Rearranging gives: \[ 0 = 325a^2 - 260a + 52 \] ### Step 11: Solve the Quadratic Equation Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{260 \pm \sqrt{(-260)^2 - 4 \cdot 325 \cdot 52}}{2 \cdot 325} \] Calculating the discriminant and simplifying will yield values for \( a \). ### Step 12: Find b and Calculate 5a + b Once \( a \) is found, substitute back to find \( b \) and compute \( 5a + b \). ### Final Result After calculating, we find that: \[ 5a + b = 5 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A=[5a -b 3 2] and A (adj A)=A A^T , then 5a+b is equal to: (1) -1 (2) 5 (3) 4 (4) 13

If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) 5 (3) 4 (4) 13

If A={2,3} B={4,5} then A X B is equal to

Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0 , then B is equal to

If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is equal to

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If {:S=[(a,b),(c,d)]:} , then adj S is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

If A is matrix of order 3 such that |A|=5 and B= adj A, then the value of ||A^(-1)|(AB)^(T)| is equal to

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. Let A be any 3xx3 invertible matrix. Thenwhich one of the following i...

    Text Solution

    |

  2. For two 3xx3 matrices A and B, let A+B=2B' and 3A+2B=I3 where B' is t...

    Text Solution

    |

  3. If A=|{:(,5a,-b),(,3,2):}| and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  4. The system of linear equations x+lambday-z=0, lambdax-y-z=0, x+y-lam...

    Text Solution

    |

  5. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Let A be a 3xx3 matrix such that A^2-5A+7I=0 then which of the stateme...

    Text Solution

    |

  8. If {:A=[(-4,-1),(3,1)]:}, then the determint of the matrix (A^2016-2A^...

    Text Solution

    |

  9. The set of all values of lambda for which the system of linear equ...

    Text Solution

    |

  10. if A=[(1,2,3),(2,1,-1),(a,2,b)] is a matrix satisfying A A'=9l(3,) fin...

    Text Solution

    |

  11. if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| ...

    Text Solution

    |

  12. If A=[(0,-1),(1,0)] , then which one of the following statements is n...

    Text Solution

    |

  13. If A is a 3 x 3 matrix such that |5-adjA|=5 , then |A| is equal to ...

    Text Solution

    |

  14. If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 t...

    Text Solution

    |

  15. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  16. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  17. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  18. The number of values of k, for which the system of eauations: (k+1)x...

    Text Solution

    |

  19. IF P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of 3xx3 matrix A and...

    Text Solution

    |

  20. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |