Home
Class 12
MATHS
If {:A=[(-4,-1),(3,1)]:}, then the deter...

If `{:A=[(-4,-1),(3,1)]:}`, then the determint of the matrix `(A^2016-2A^2015-A^2014)`,is

A

`-175`

B

`2014`

C

2016

D

`-25`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the expression \( A^{2016} - 2A^{2015} - A^{2014} \) where the matrix \( A \) is given as: \[ A = \begin{pmatrix} -4 & -1 \\ 3 & 1 \end{pmatrix} \] ### Step 1: Factor out \( A^{2014} \) We can factor out \( A^{2014} \) from the expression: \[ A^{2016} - 2A^{2015} - A^{2014} = A^{2014}(A^2 - 2A - I) \] ### Step 2: Calculate the determinant Using the property of determinants, we have: \[ \text{det}(A^{2016} - 2A^{2015} - A^{2014}) = \text{det}(A^{2014}) \cdot \text{det}(A^2 - 2A - I) \] ### Step 3: Calculate \( \text{det}(A^{2014}) \) The determinant of \( A \) is calculated as follows: \[ \text{det}(A) = (-4)(1) - (-1)(3) = -4 + 3 = -1 \] Thus, \[ \text{det}(A^{2014}) = (-1)^{2014} = 1 \] ### Step 4: Calculate \( A^2 - 2A - I \) First, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} -4 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} -4 & -1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} (-4)(-4) + (-1)(3) & (-4)(-1) + (-1)(1) \\ (3)(-4) + (1)(3) & (3)(-1) + (1)(1) \end{pmatrix} \] Calculating each entry: - First row, first column: \( 16 - 3 = 13 \) - First row, second column: \( 4 - 1 = 3 \) - Second row, first column: \( -12 + 3 = -9 \) - Second row, second column: \( -3 + 1 = -2 \) Thus, \[ A^2 = \begin{pmatrix} 13 & 3 \\ -9 & -2 \end{pmatrix} \] Next, we calculate \( -2A \): \[ -2A = -2 \begin{pmatrix} -4 & -1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 2 \\ -6 & -2 \end{pmatrix} \] Now, we calculate \( -I \): \[ -I = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] Now, we combine these results to find \( A^2 - 2A - I \): \[ A^2 - 2A - I = \begin{pmatrix} 13 & 3 \\ -9 & -2 \end{pmatrix} + \begin{pmatrix} 8 & 2 \\ -6 & -2 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] Calculating each entry: - First row, first column: \( 13 + 8 - 1 = 20 \) - First row, second column: \( 3 + 2 + 0 = 5 \) - Second row, first column: \( -9 - 6 + 0 = -15 \) - Second row, second column: \( -2 - 2 - 1 = -5 \) Thus, \[ A^2 - 2A - I = \begin{pmatrix} 20 & 5 \\ -15 & -5 \end{pmatrix} \] ### Step 5: Calculate the determinant of \( A^2 - 2A - I \) Now, we calculate the determinant: \[ \text{det}(A^2 - 2A - I) = (20)(-5) - (5)(-15) = -100 + 75 = -25 \] ### Step 6: Combine results Now we combine the results: \[ \text{det}(A^{2016} - 2A^{2015} - A^{2014}) = \text{det}(A^{2014}) \cdot \text{det}(A^2 - 2A - I) = 1 \cdot (-25) = -25 \] ### Final Answer Thus, the final answer is: \[ \boxed{-25} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

[{:(1,-1),(2,3):}] find the inverse of matrix

1.Find the adjoint of the matrix A= [[1,2],[3,4]]

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

Find the inverse of the matrix A= [(3,1),(4,2)]

The rank of the matrix A={:[(1,2,3,4),(4,3,2,1)]:} , is

Find the inverse of the matrix |[2,-1], [3, 4]| .

If A^(-1) = ((3,1),(-1,2)) , find the matrix A.

find the transpose of the matrix A=[{:(1,3,-4),(0,2,1):}].

Write the adjoint of the following matrix: [[2,-1],[4,3]]

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. about to only mathematics

    Text Solution

    |

  2. Let A be a 3xx3 matrix such that A^2-5A+7I=0 then which of the stateme...

    Text Solution

    |

  3. If {:A=[(-4,-1),(3,1)]:}, then the determint of the matrix (A^2016-2A^...

    Text Solution

    |

  4. The set of all values of lambda for which the system of linear equ...

    Text Solution

    |

  5. if A=[(1,2,3),(2,1,-1),(a,2,b)] is a matrix satisfying A A'=9l(3,) fin...

    Text Solution

    |

  6. if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| ...

    Text Solution

    |

  7. If A=[(0,-1),(1,0)] , then which one of the following statements is n...

    Text Solution

    |

  8. If A is a 3 x 3 matrix such that |5-adjA|=5 , then |A| is equal to ...

    Text Solution

    |

  9. If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 t...

    Text Solution

    |

  10. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  11. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  12. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  13. The number of values of k, for which the system of eauations: (k+1)x...

    Text Solution

    |

  14. IF P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of 3xx3 matrix A and...

    Text Solution

    |

  15. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  16. Let P and Q be 3xx3 matrices P ne Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P,...

    Text Solution

    |

  17. The number of values of k for which the linear equations 4x+ky+2...

    Text Solution

    |

  18. Let A and B two symmetric matrices of order 3. Statement 1 : A(BA) a...

    Text Solution

    |

  19. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  20. Statement-1:Determination of a skew-symmetric matrix of order 3 is zer...

    Text Solution

    |