Home
Class 12
MATHS
If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3)...

If `|(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12` then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

A

12

B

24

C

`-12`

D

`-24`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) in the equation given by the determinant: \[ \left| \begin{array}{ccc} x^2 + x & x + 1 & x - 2 \\ 2x^2 + 3x - 1 & 3x & 3x - 3 \\ x^2 + 2x + 3 & 2x - 1 & 2x - 1 \end{array} \right| = ax - 12 \] ### Step 1: Substitute \( x = 1 \) To simplify the calculation, we substitute \( x = 1 \) into the determinant: \[ \left| \begin{array}{ccc} 1^2 + 1 & 1 + 1 & 1 - 2 \\ 2(1^2) + 3(1) - 1 & 3(1) & 3(1) - 3 \\ 1^2 + 2(1) + 3 & 2(1) - 1 & 2(1) - 1 \end{array} \right| \] Calculating each entry: - First row: \( 1 + 1 = 2, 1 + 1 = 2, 1 - 2 = -1 \) - Second row: \( 2 + 3 - 1 = 4, 3, 0 \) - Third row: \( 1 + 2 + 3 = 6, 1, 1 \) So, the determinant simplifies to: \[ \left| \begin{array}{ccc} 2 & 2 & -1 \\ 4 & 3 & 0 \\ 6 & 1 & 1 \end{array} \right| \] ### Step 2: Calculate the Determinant Now we will calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows respectively. Substituting the values: \[ \text{Det} = 2 \left( 3 \cdot 1 - 0 \cdot 1 \right) - 2 \left( 4 \cdot 1 - 0 \cdot 6 \right) + (-1) \left( 4 \cdot 1 - 3 \cdot 6 \right) \] Calculating each term: 1. \( 2(3 \cdot 1 - 0 \cdot 1) = 2 \cdot 3 = 6 \) 2. \( -2(4 \cdot 1 - 0 \cdot 6) = -2 \cdot 4 = -8 \) 3. \( -1(4 \cdot 1 - 3 \cdot 6) = -1(4 - 18) = -1(-14) = 14 \) Combining these results: \[ \text{Det} = 6 - 8 + 14 = 12 \] ### Step 3: Set the Determinant Equal to \( ax - 12 \) Now we have: \[ 12 = a(1) - 12 \] ### Step 4: Solve for \( a \) Rearranging gives: \[ 12 + 12 = a \implies a = 24 \] ### Final Answer Thus, the value of \( a \) is \( \boxed{24} \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B then find A and B

If px^4+qx^3+rx^2+sx+t=|(x^2+3x,x-1,x+3),(x+1,2-x,x-3),(x-3,x+4,3x)| then t is equal to

If px^(4)+qx^(3)+rx^(2)+sx+t=|{:(x^(2)+3x,x-1,x+3),(x^(2)+1,2-x,x-3),(x^(2)-3,x+4,3x):}| then t is equal to

Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then the value of d is

If 12^(4+2x^(2)) = (24sqrt(3))^(3x^(2)-2) , then x is equal to

lim_(x rarr 2) (x^6-24 x-16)/(x^3+2x-12)

Simplify: (x^3-2x^2+3x-4)(x-1)-\ (2x-3)(x^2-x+1)

If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:} , then f(A) is equal to

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

If f(x)=3x^(4)+4x^(3)-12x^(2)+12 , then f(x) is

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. If A=[(0,-1),(1,0)] , then which one of the following statements is n...

    Text Solution

    |

  2. If A is a 3 x 3 matrix such that |5-adjA|=5 , then |A| is equal to ...

    Text Solution

    |

  3. If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 t...

    Text Solution

    |

  4. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  5. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  6. If A is a 3xx3 non-singular matrix such that A A' = A' A and B = A^(...

    Text Solution

    |

  7. The number of values of k, for which the system of eauations: (k+1)x...

    Text Solution

    |

  8. IF P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of 3xx3 matrix A and...

    Text Solution

    |

  9. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  10. Let P and Q be 3xx3 matrices P ne Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P,...

    Text Solution

    |

  11. The number of values of k for which the linear equations 4x+ky+2...

    Text Solution

    |

  12. Let A and B two symmetric matrices of order 3. Statement 1 : A(BA) a...

    Text Solution

    |

  13. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  14. Statement-1:Determination of a skew-symmetric matrix of order 3 is zer...

    Text Solution

    |

  15. If omega=1 is the complex cube root of unity and matrix H=|{:(,omega,0...

    Text Solution

    |

  16. Consider the system of linear equations: x(1) + 2x(2) + x(3) = 3 2...

    Text Solution

    |

  17. The number of 3 x 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  18. Let a be a 2xx2 matrix with non-zero entries and let A^(2)=I, where I ...

    Text Solution

    |

  19. Let a,b,c be such that b(a+c) ne 0. If |{:(a,a+1,a-1),(-b,b+1,b-1)...

    Text Solution

    |

  20. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |