Home
Class 12
MATHS
Consider the system of linear equations:...

Consider the system of linear equations:
`x_(1) + 2x_(2) + x_(3) = 3`
`2x_(1) + 3x_(2) + x_(3) = 3`
`3x_(1) + 5x_(2) + 2x_(3) = 1`
The system has

A

Infinite number of solutions

B

Exactly 3 solutions

C

A unique solution

D

No solution

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of linear equations, we will use determinants to analyze the system. The equations are: 1. \( x_1 + 2x_2 + x_3 = 3 \) 2. \( 2x_1 + 3x_2 + x_3 = 3 \) 3. \( 3x_1 + 5x_2 + 2x_3 = 1 \) We want to determine if the system has a unique solution, no solution, or infinitely many solutions. We will use Cramer's rule and the concept of determinants. ### Step 1: Form the Coefficient Matrix and the Constant Matrix The coefficient matrix \( A \) and the constant matrix \( B \) can be formed as follows: \[ A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} \] ### Step 2: Calculate the Determinant of the Coefficient Matrix \( A \) We will calculate the determinant \( D \) of the matrix \( A \): \[ D = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows respectively. Calculating \( D \): \[ D = 1 \cdot (3 \cdot 2 - 1 \cdot 5) - 2 \cdot (2 \cdot 2 - 1 \cdot 3) + 1 \cdot (2 \cdot 5 - 3 \cdot 3) \] Calculating each term: 1. \( 3 \cdot 2 - 1 \cdot 5 = 6 - 5 = 1 \) 2. \( 2 \cdot 2 - 1 \cdot 3 = 4 - 3 = 1 \) 3. \( 2 \cdot 5 - 3 \cdot 3 = 10 - 9 = 1 \) Putting it all together: \[ D = 1 \cdot 1 - 2 \cdot 1 + 1 \cdot 1 = 1 - 2 + 1 = 0 \] ### Step 3: Analyze the Determinant Since \( D = 0 \), we need to check the determinants of the matrices formed by replacing columns of \( A \) with the constant matrix \( B \). ### Step 4: Calculate \( D_1 \), \( D_2 \), and \( D_3 \) #### Calculate \( D_1 \) Replace the first column of \( A \) with \( B \): \[ D_1 = \begin{vmatrix} 3 & 2 & 1 \\ 3 & 3 & 1 \\ 1 & 5 & 2 \end{vmatrix} \] Calculating \( D_1 \): \[ D_1 = 3(3 \cdot 2 - 1 \cdot 5) - 2(3 \cdot 2 - 1 \cdot 1) + 1(3 \cdot 5 - 3 \cdot 1) \] Calculating each term: 1. \( 3 \cdot 2 - 1 \cdot 5 = 6 - 5 = 1 \) 2. \( 3 \cdot 2 - 1 \cdot 1 = 6 - 1 = 5 \) 3. \( 3 \cdot 5 - 3 \cdot 1 = 15 - 3 = 12 \) Putting it all together: \[ D_1 = 3 \cdot 1 - 2 \cdot 5 + 1 \cdot 12 = 3 - 10 + 12 = 5 \] #### Calculate \( D_2 \) Replace the second column of \( A \) with \( B \): \[ D_2 = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{vmatrix} \] Calculating \( D_2 \): \[ D_2 = 1(3 \cdot 2 - 1 \cdot 1) - 3(2 \cdot 2 - 1 \cdot 3) + 1(2 \cdot 1 - 3 \cdot 3) \] Calculating each term: 1. \( 3 \cdot 2 - 1 \cdot 1 = 6 - 1 = 5 \) 2. \( 2 \cdot 2 - 1 \cdot 3 = 4 - 3 = 1 \) 3. \( 2 \cdot 1 - 3 \cdot 3 = 2 - 9 = -7 \) Putting it all together: \[ D_2 = 1 \cdot 5 - 3 \cdot 1 + 1 \cdot (-7) = 5 - 3 - 7 = -5 \] #### Calculate \( D_3 \) Replace the third column of \( A \) with \( B \): \[ D_3 = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 5 & 1 \end{vmatrix} \] Calculating \( D_3 \): \[ D_3 = 1(3 \cdot 1 - 3 \cdot 5) - 2(2 \cdot 1 - 3 \cdot 3) + 3(2 \cdot 5 - 3 \cdot 3) \] Calculating each term: 1. \( 3 \cdot 1 - 3 \cdot 5 = 3 - 15 = -12 \) 2. \( 2 \cdot 1 - 3 \cdot 3 = 2 - 9 = -7 \) 3. \( 2 \cdot 5 - 3 \cdot 3 = 10 - 9 = 1 \) Putting it all together: \[ D_3 = 1 \cdot (-12) - 2 \cdot (-7) + 3 \cdot 1 = -12 + 14 + 3 = 5 \] ### Step 5: Conclusion We have: - \( D = 0 \) - \( D_1 = 5 \) (non-zero) - \( D_2 = -5 \) (non-zero) - \( D_3 = 5 \) (non-zero) Since \( D = 0 \) and at least one of \( D_1, D_2, D_3 \) is non-zero, the system of equations has no solution. ### Final Answer The system has **no solution**.
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

The set of the all values of lamda for which the system of linear equations 2x_(1) - 2x_(2) + x_(3) = lamdax_(1) 2x_(1) - 3x_(2) + 2x_(3) = lamda x_(2) -x_(1) + 2x_(2) = lamda x_(3) has a non-trivial solution,

Using the matrix method, solve the following system of equations: x_(1)-2x_(2) + 3x_(3) =4, 2x_(1) + x_(2)-3x_(3) =5, -x_(1) + x_(2) + 2x_(3)=3

Consider the system of linear equations; x-1\ +2x_2+x_3=3, 2x_1+3x_2+_3=3, 3x_1+5x_2+2x_3=1 The system has Infinite number of solutions Exactly 3 solutions A unique solution No solution

The system of linear equations x + y + z = 2 2x + 3y + 2z = 5 2x + 3y + (a^(2) - 1)z = a + 1

Solve the system of equations 2x + 5y = 1 and 3x + 2y = 7

Solve system of linear equations, using matrix method, 2x - y = -2" " 3x + 4y = 3

Solve the following system of linear equations by matrix method: 3x-2y=7, 5x+3y=1

The solution set of system of linear inequalities 2(x+1) le x+5, 3(x+2), gt 2 - x , x in R is

Find the sum of the following algebraic expressions : 3x^(3) - 5x^(2) + 2x + 1 , 3x - 2x^(3) - x^(3) , 2x^(2) - 7x + 9

Examine the consistency of the system of equations 3x -y - 2z = 2" " 2y -z = 1" " 3x - 5y = 3

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. Statement-1:Determination of a skew-symmetric matrix of order 3 is zer...

    Text Solution

    |

  2. If omega=1 is the complex cube root of unity and matrix H=|{:(,omega,0...

    Text Solution

    |

  3. Consider the system of linear equations: x(1) + 2x(2) + x(3) = 3 2...

    Text Solution

    |

  4. The number of 3 x 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  5. Let a be a 2xx2 matrix with non-zero entries and let A^(2)=I, where I ...

    Text Solution

    |

  6. Let a,b,c be such that b(a+c) ne 0. If |{:(a,a+1,a-1),(-b,b+1,b-1)...

    Text Solution

    |

  7. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  8. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identity...

    Text Solution

    |

  9. Let a,b,c, be any real number. Suppose that there are real numbers x,y...

    Text Solution

    |

  10. Let A be a square matrix all of whose entries are integers. Which on...

    Text Solution

    |

  11. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  12. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  13. If A and B f are square matrices of size nxxn such that A^(2) - B^(2...

    Text Solution

    |

  14. Let A =((1,2),(3,4))and B= ((a,0),(0,b)), a, bin N. Then,

    Text Solution

    |

  15. If A is a square matrix such that A^2-A+l=0, then the inverse of A is

    Text Solution

    |

  16. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  17. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |

  18. if a(1),a(2),…….a(n),……. form a G.P. and a(1) gt 0 , for all I ge 1 ...

    Text Solution

    |

  19. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  20. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |