Home
Class 12
MATHS
Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then ...

Let `A=[(0,0,-1),(0,-1,0),(-1,0,0)]` Then only correct statement about the matrix A is (A) A is a zero matrix (B) `A^2=1` (C) `A^-1` does not exist (D) `A=(-1)` I where I is a unit matrix

A

A is a zero matrix

B

`A=(-1)I`, where I is a unit matrix

C

`A^(-1)` does not exist

D

`A^2=I`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about the matrix A is (A) A is a zero matrix (B) A^2=I (C) A^-1 does not exist (D) A=(-1) I where I is a unit matrix

If A=[(1,0,0),(0,1,0),(1,b,0] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If matrix A=[(0,-1),(1,0)] , then A^16 =

If A = [(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

Show that A is a symmetric matrix if A= [ (1,0), (0, -1)]

Statement 1: For a singular square matrix A ,A B=A C B=Cdot Statement 2; |A|=0,t h e nA^(-1) does not exist.

The matrix A=[{:(0,0,2),(0,2,0),(2,0,0):}] is: a) scalar matrix b) diagonal matrix c) square matrix d) none of these

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

If I_n is the identity matrix of order n then (I_n)^-1 (A) does not exist (B) =0 (C) =I_n (D) =nI_n

If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then the value of (a+b+c)^(2) is

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |

  2. if a(1),a(2),…….a(n),……. form a G.P. and a(1) gt 0 , for all I ge 1 ...

    Text Solution

    |

  3. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  4. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  5. If the system of linear equations {:(x+2ay+az=0),(x+3by+bz=0),(x+4cy...

    Text Solution

    |

  6. If A=[{:(a,b),(b,a):}] and A^(2)=[{:(alpha, beta),(beta, alpha):}] the...

    Text Solution

    |

  7. If omega is a non-real cube root of unity and n is not a multiple o...

    Text Solution

    |

  8. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  9. If one of the cube roots of 1 be omega, then |(1,1+omega^2,omega^2),(...

    Text Solution

    |

  10. If A is a symmetric matrix and B is a skew-symmetric matrix such that ...

    Text Solution

    |

  11. The total number of matrices A = [{:(0, 2y, 1), (2x, y, -1), (2x, -y,...

    Text Solution

    |

  12. Let A={:(cosalpha,-sinalpha),(sinalpha,cosalpha):},(ainR) such that A...

    Text Solution

    |

  13. Let P=[(1, 0, 0),(3, 1, 0),(9, 3, 1)]Q=[q(ij)] and Q=P^5+I3 then (q21+...

    Text Solution

    |

  14. Let A = ((0,2q,r),(p,q,-r),(p,-q,r)). If A A^(T) = I(3), then |p| is

    Text Solution

    |

  15. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  16. The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x...

    Text Solution

    |

  17. If Delta(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos the...

    Text Solution

    |

  18. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  19. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  20. If |(1,1,1),(2,b,c),(4,b^(2),c^(2))| and |A| = in [2, 16]. 2, b, c and...

    Text Solution

    |