Home
Class 12
MATHS
If A is a symmetric matrix and B is a sk...

If A is a symmetric matrix and B is a skew-symmetric matrix such that
`A + B = [{:(2,3),(5,-1):}]`, then AB is equal to

A

`[(-4,-2),(-1,4)]`

B

`[(4,-2),(-1,-4)]`

C

`[(4,-2),(1,-4)]`

D

`[(-4,2),(1,4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of matrices A and B given that A is symmetric, B is skew-symmetric, and their sum is a specific matrix. Let's break down the solution step by step. ### Step 1: Define the matrices A and B Given: - A is a symmetric matrix, which means \( A^T = A \). - B is a skew-symmetric matrix, which means \( B^T = -B \). - We know that \( A + B = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} \). ### Step 2: Find the transpose of the sum Taking the transpose of both sides of the equation \( A + B \): \[ (A + B)^T = A^T + B^T \] Substituting the properties of A and B: \[ A + B = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} \Rightarrow A + B = \begin{pmatrix} 2 & 5 \\ 3 & -1 \end{pmatrix} \] ### Step 3: Set up equations for A and B We now have two equations: 1. \( A + B = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} \) (Equation 1) 2. \( A - B = \begin{pmatrix} 2 & 5 \\ 3 & -1 \end{pmatrix} \) (Equation 2) ### Step 4: Add the two equations Adding Equation 1 and Equation 2: \[ (A + B) + (A - B) = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} + \begin{pmatrix} 2 & 5 \\ 3 & -1 \end{pmatrix} \] This simplifies to: \[ 2A = \begin{pmatrix} 4 & 8 \\ 8 & -2 \end{pmatrix} \] Dividing by 2: \[ A = \begin{pmatrix} 2 & 4 \\ 4 & -1 \end{pmatrix} \] ### Step 5: Substitute A back to find B Now substitute A back into Equation 1 to find B: \[ B = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} - A \] Calculating B: \[ B = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] ### Step 6: Calculate the product AB Now we can find the product \( AB \): \[ AB = \begin{pmatrix} 2 & 4 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] Calculating the product: - First row, first column: \( 2 \cdot 0 + 4 \cdot 1 = 4 \) - First row, second column: \( 2 \cdot -1 + 4 \cdot 0 = -2 \) - Second row, first column: \( 4 \cdot 0 + (-1) \cdot 1 = -1 \) - Second row, second column: \( 4 \cdot -1 + (-1) \cdot 0 = -4 \) Thus, \[ AB = \begin{pmatrix} 4 & -2 \\ -1 & -4 \end{pmatrix} \] ### Final Answer The product \( AB \) is: \[ \begin{pmatrix} 4 & -2 \\ -1 & -4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A is skew-symmetric matrix then A^(2) is a symmetric matrix.

If A is symmetric as well as skew-symmetric matrix, then A is

If A is symmetric as well as skew-symmetric matrix, then A is

If A is a square matrix, then A is skew symmetric if

If A is skew-symmetric matrix, then trace of A is

If A and B are symmetric matrices, prove that AB BA is a skew symmetric matrix.

If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix.

A is even ordered non singular symmetric matrix and B is even ordered non singular skew symmetric matrix such that AB = BA, then A^3B^3(B'A)^(-1)(A^(-1)B^(-1))' AB is equal to :

A matrix which is both symmetric and skew-symmetric is a

It A is a symmetric matrix, write whether A^T is symmetric or skew - symmetric matrix.

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  2. If one of the cube roots of 1 be omega, then |(1,1+omega^2,omega^2),(...

    Text Solution

    |

  3. If A is a symmetric matrix and B is a skew-symmetric matrix such that ...

    Text Solution

    |

  4. The total number of matrices A = [{:(0, 2y, 1), (2x, y, -1), (2x, -y,...

    Text Solution

    |

  5. Let A={:(cosalpha,-sinalpha),(sinalpha,cosalpha):},(ainR) such that A...

    Text Solution

    |

  6. Let P=[(1, 0, 0),(3, 1, 0),(9, 3, 1)]Q=[q(ij)] and Q=P^5+I3 then (q21+...

    Text Solution

    |

  7. Let A = ((0,2q,r),(p,q,-r),(p,-q,r)). If A A^(T) = I(3), then |p| is

    Text Solution

    |

  8. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  9. The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x...

    Text Solution

    |

  10. If Delta(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos the...

    Text Solution

    |

  11. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  12. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  13. If |(1,1,1),(2,b,c),(4,b^(2),c^(2))| and |A| = in [2, 16]. 2, b, c and...

    Text Solution

    |

  14. If A = [(1,sin theta, 1),(-sintheta, 1, sin theta),(-1, -1sin theta, 1...

    Text Solution

    |

  15. |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  16. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  17. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  18. Let d in R, and A[{:(,-2,4+d,(sin theta-2)),(,1,(sin theta)+2,d),(,5,(...

    Text Solution

    |

  19. If B = [{:(5, 2alpha, 1),(0, 2, 1),(alpha, 3, -1):}] is the inver...

    Text Solution

    |

  20. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |