Home
Class 12
MATHS
The total number of matrices A = [{:(0,...

The total number of matrices `A = [{:(0, 2y, 1), (2x, y, -1), (2x, -y, 1):}] (x, y in R, x ne y)` for which `A^(T)A = 3I_(3)` is

A

2

B

4

C

3

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the total number of matrices \( A \) such that: \[ A = \begin{pmatrix} 0 & 2y & 1 \\ 2x & y & -1 \\ 2x & -y & 1 \end{pmatrix} \] and it satisfies the condition \( A^T A = 3 I_3 \), where \( I_3 \) is the identity matrix of order 3. ### Step 1: Find the Transpose of Matrix A The transpose of matrix \( A \) is given by: \[ A^T = \begin{pmatrix} 0 & 2x & 2x \\ 2y & y & -y \\ 1 & -1 & 1 \end{pmatrix} \] ### Step 2: Compute \( A^T A \) Now, we need to compute the product \( A^T A \): \[ A^T A = \begin{pmatrix} 0 & 2x & 2x \\ 2y & y & -y \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2y & 1 \\ 2x & y & -1 \\ 2x & -y & 1 \end{pmatrix} \] Calculating each element of the resulting matrix: 1. **First Row, First Column:** \[ 0 \cdot 0 + 2x \cdot 2x + 2x \cdot 2x = 4x^2 + 4x^2 = 8x^2 \] 2. **First Row, Second Column:** \[ 0 \cdot 2y + 2x \cdot y + 2x \cdot (-y) = 2xy - 2xy = 0 \] 3. **First Row, Third Column:** \[ 0 \cdot 1 + 2x \cdot (-1) + 2x \cdot 1 = -2x + 2x = 0 \] 4. **Second Row, First Column:** \[ 2y \cdot 0 + y \cdot 2x + (-y) \cdot 2x = 2xy - 2xy = 0 \] 5. **Second Row, Second Column:** \[ 2y \cdot 2y + y \cdot y + (-y) \cdot (-y) = 4y^2 + y^2 + y^2 = 6y^2 \] 6. **Second Row, Third Column:** \[ 2y \cdot 1 + y \cdot (-1) + (-y) \cdot 1 = 2y - y - y = 0 \] 7. **Third Row, First Column:** \[ 1 \cdot 0 + (-1) \cdot 2x + 1 \cdot 2x = -2x + 2x = 0 \] 8. **Third Row, Second Column:** \[ 1 \cdot 2y + (-1) \cdot y + 1 \cdot (-y) = 2y - y - y = 0 \] 9. **Third Row, Third Column:** \[ 1 \cdot 1 + (-1) \cdot (-1) + 1 \cdot 1 = 1 + 1 + 1 = 3 \] So, we have: \[ A^T A = \begin{pmatrix} 8x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \] ### Step 3: Set \( A^T A \) Equal to \( 3 I_3 \) We know that: \[ 3 I_3 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \] Setting the matrices equal gives us the following equations: 1. \( 8x^2 = 3 \) 2. \( 6y^2 = 3 \) 3. The third equation is satisfied as it is \( 3 = 3 \). ### Step 4: Solve for \( x \) and \( y \) From \( 8x^2 = 3 \): \[ x^2 = \frac{3}{8} \implies x = \pm \sqrt{\frac{3}{8}} = \pm \frac{\sqrt{3}}{2\sqrt{2}} = \pm \frac{\sqrt{6}}{4} \] From \( 6y^2 = 3 \): \[ y^2 = \frac{3}{6} = \frac{1}{2} \implies y = \pm \frac{1}{\sqrt{2}} \] ### Step 5: Count the Valid Combinations We have two possible values for \( x \) and two possible values for \( y \): - \( x = \frac{\sqrt{6}}{4} \) or \( x = -\frac{\sqrt{6}}{4} \) - \( y = \frac{1}{\sqrt{2}} \) or \( y = -\frac{1}{\sqrt{2}} \) Since \( x \neq y \), we need to ensure that the combinations do not lead to \( x = y \). The valid combinations are: 1. \( x = \frac{\sqrt{6}}{4}, y = \frac{1}{\sqrt{2}} \) 2. \( x = \frac{\sqrt{6}}{4}, y = -\frac{1}{\sqrt{2}} \) 3. \( x = -\frac{\sqrt{6}}{4}, y = \frac{1}{\sqrt{2}} \) 4. \( x = -\frac{\sqrt{6}}{4}, y = -\frac{1}{\sqrt{2}} \) Thus, we have a total of **4 valid matrices**. ### Final Answer The total number of matrices \( A \) is **4**.
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the median through A . Show that : |(x, y, 1), (x_1, y_1, 1), (x_2, y_2, 1)| + |(x, y, 1), (x_1, y_1, 1), (x_3, y_3, 1)|=0

Solve: 3 (2x+ y ) = 7xy 3(x+ 3y ) = 11xy , x ne 0 , y ne 0

Find matrices X and Y , if X+Y=[(5, 2),( 0, 9)] and X-Y=[(3, 6),( 0,-1)] .

If set A and B are defined as A = {(x,y)|y = 1/x, 0 ne x in R}, B = {(x,y)|y = -x , x in R,} . Then

If [(x+y,y),(2x,x-y)][(2),(-1)]=[3/2] then x.y is equal to :

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

Solve : {:((2xy)/(x+y)=(3)/(2)),((xy)/(2x-y)=-(3)/(10)):} x+y ne 0 and 2x-y ne 0

If (1+2i) (2+3i)(3+4i)=x+iy,x,y in R then x^(2)+y^(2) is

The value of lim_(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the line y = x -1 is

The value of lim_(x->1) y^3/(x^3-y^2-1) as (x, y)-> (1, 0) along the line y = x -1 is

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. If one of the cube roots of 1 be omega, then |(1,1+omega^2,omega^2),(...

    Text Solution

    |

  2. If A is a symmetric matrix and B is a skew-symmetric matrix such that ...

    Text Solution

    |

  3. The total number of matrices A = [{:(0, 2y, 1), (2x, y, -1), (2x, -y,...

    Text Solution

    |

  4. Let A={:(cosalpha,-sinalpha),(sinalpha,cosalpha):},(ainR) such that A...

    Text Solution

    |

  5. Let P=[(1, 0, 0),(3, 1, 0),(9, 3, 1)]Q=[q(ij)] and Q=P^5+I3 then (q21+...

    Text Solution

    |

  6. Let A = ((0,2q,r),(p,q,-r),(p,-q,r)). If A A^(T) = I(3), then |p| is

    Text Solution

    |

  7. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  8. The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x...

    Text Solution

    |

  9. If Delta(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos the...

    Text Solution

    |

  10. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  11. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  12. If |(1,1,1),(2,b,c),(4,b^(2),c^(2))| and |A| = in [2, 16]. 2, b, c and...

    Text Solution

    |

  13. If A = [(1,sin theta, 1),(-sintheta, 1, sin theta),(-1, -1sin theta, 1...

    Text Solution

    |

  14. |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  15. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  16. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  17. Let d in R, and A[{:(,-2,4+d,(sin theta-2)),(,1,(sin theta)+2,d),(,5,(...

    Text Solution

    |

  18. If B = [{:(5, 2alpha, 1),(0, 2, 1),(alpha, 3, -1):}] is the inver...

    Text Solution

    |

  19. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  20. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |