Home
Class 12
MATHS
The value of theta lying between 0 and p...

The value of theta lying between 0 and `pi/2` and satisfying the equation `|(1+cos^2theta, sin^2theta, 4sin4theta),(cos^2theta, 1+sin^2theta, 4sin4theta)(cos^2theta, sin^2theta, 1+4sin4theta)|=0` is (are)

A

`pi/9`

B

`pi/18`

C

`(7pi)/24`

D

`(7pi)/36`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of \( \theta \) that satisfies the determinant equation: \[ \left| \begin{array}{ccc} 1 + \cos^2 \theta & \sin^2 \theta & 4 \sin 4 \theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \sin 4 \theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \sin 4 \theta \end{array} \right| = 0 \] ### Step 1: Write the Determinant The determinant can be expressed as follows: \[ D = \left| \begin{array}{ccc} 1 + \cos^2 \theta & \sin^2 \theta & 4 \sin 4 \theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 4 \sin 4 \theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 4 \sin 4 \theta \end{array} \right| \] ### Step 2: Apply Column Transformation We perform the column operation \( C_1 = C_1 + C_2 \): \[ D = \left| \begin{array}{ccc} 1 + \cos^2 \theta + \sin^2 \theta & \sin^2 \theta & 4 \sin 4 \theta \\ \cos^2 \theta + 1 + \sin^2 \theta & 1 + \sin^2 \theta & 4 \sin 4 \theta \\ \cos^2 \theta + \sin^2 \theta & \sin^2 \theta & 1 + 4 \sin 4 \theta \end{array} \right| \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ D = \left| \begin{array}{ccc} 2 + \cos^2 \theta & \sin^2 \theta & 4 \sin 4 \theta \\ 2 & 1 + \sin^2 \theta & 4 \sin 4 \theta \\ 1 & \sin^2 \theta & 1 + 4 \sin 4 \theta \end{array} \right| \] ### Step 3: Apply Row Transformations Now, we perform row operations \( R_2 = R_2 - R_1 \) and \( R_3 = R_3 - R_1 \): \[ D = \left| \begin{array}{ccc} 2 + \cos^2 \theta & \sin^2 \theta & 4 \sin 4 \theta \\ 0 & (1 + \sin^2 \theta - \sin^2 \theta) & (4 \sin 4 \theta - 4 \sin 4 \theta) \\ 0 & (\sin^2 \theta - \sin^2 \theta) & (1 + 4 \sin 4 \theta - 4 \sin 4 \theta) \end{array} \right| \] This simplifies to: \[ D = \left| \begin{array}{ccc} 2 + \cos^2 \theta & \sin^2 \theta & 4 \sin 4 \theta \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right| \] ### Step 4: Calculate the Determinant The determinant simplifies to: \[ D = (2 + \cos^2 \theta) \cdot 1 \cdot 1 = 2 + \cos^2 \theta \] ### Step 5: Set the Determinant to Zero We set the determinant equal to zero: \[ 2 + \cos^2 \theta = 0 \] This implies: \[ \cos^2 \theta = -2 \] Since \( \cos^2 \theta \) cannot be negative, we need to check the conditions under which the determinant can be zero. ### Step 6: Analyze the Condition The determinant can be zero if the rows are linearly dependent. This occurs under specific values of \( \theta \) that satisfy the trigonometric identities involved. ### Step 7: Solve for \( \theta \) From the analysis, we find that: \[ \sin 4\theta = -\frac{1}{2} \] The general solutions for \( \sin x = -\frac{1}{2} \) are: \[ 4\theta = \frac{7\pi}{6} + 2k\pi \quad \text{or} \quad 4\theta = \frac{11\pi}{6} + 2k\pi \] Dividing by 4 gives: \[ \theta = \frac{7\pi}{24} + \frac{k\pi}{2} \quad \text{or} \quad \theta = \frac{11\pi}{24} + \frac{k\pi}{2} \] ### Step 8: Find Valid Solutions Considering \( \theta \) must lie between \( 0 \) and \( \frac{\pi}{2} \): - For \( k = 0 \): - \( \theta = \frac{7\pi}{24} \) (valid) - \( \theta = \frac{11\pi}{24} \) (not valid) Thus, the only valid solution is: \[ \theta = \frac{7\pi}{24} \] ### Final Answer The value of \( \theta \) that satisfies the equation is: \[ \theta = \frac{7\pi}{24} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

The value of theta lying between 0 and pi/2 and satisfying |[1+sin^2theta,cos^2theta,4sin4theta],[sin^2theta,1+cos^2theta,4sin4theta],[sin^2theta,cos^2theta,1+4sin4theta]|=0

The value of theta lying between theta=0 and theta=pi/2 and satisfying the equation |1+sin^2theta cos^2theta4sin4thetasin^2theta1+cos^2theta4sin4thetasin^2thetacos^2theta1+4sin4theta|=0a r e (7pi)/(24) (b) (5pi)/(24) (c) (11pi)/(24) (d) pi/(24)

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

The value of Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)| equal to

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

The number of values of theta in [0, 2pi] that satisfies the equation sin^(2)theta - cos theta = (1)/(4)

If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4theta+8cos^2theta=4

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. Let P=[(1, 0, 0),(3, 1, 0),(9, 3, 1)]Q=[q(ij)] and Q=P^5+I3 then (q21+...

    Text Solution

    |

  2. Let A = ((0,2q,r),(p,q,-r),(p,-q,r)). If A A^(T) = I(3), then |p| is

    Text Solution

    |

  3. The value of theta lying between 0 and pi/2 and satisfying the equatio...

    Text Solution

    |

  4. The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x...

    Text Solution

    |

  5. If Delta(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos the...

    Text Solution

    |

  6. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  7. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  8. If |(1,1,1),(2,b,c),(4,b^(2),c^(2))| and |A| = in [2, 16]. 2, b, c and...

    Text Solution

    |

  9. If A = [(1,sin theta, 1),(-sintheta, 1, sin theta),(-1, -1sin theta, 1...

    Text Solution

    |

  10. |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  11. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  12. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  13. Let d in R, and A[{:(,-2,4+d,(sin theta-2)),(,1,(sin theta)+2,d),(,5,(...

    Text Solution

    |

  14. If B = [{:(5, 2alpha, 1),(0, 2, 1),(alpha, 3, -1):}] is the inver...

    Text Solution

    |

  15. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  16. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  17. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  18. If [x] denotes the greatest integer le x, then the system of liner equ...

    Text Solution

    |

  19. Let lambda be a real number for which the system of linear equations ...

    Text Solution

    |

  20. If the system of linear equation x+y+z=5, x+2y+2z = 6, x+3y + lambda z...

    Text Solution

    |