Home
Class 12
MATHS
If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):...

If `[{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdotcdot[{:(1, n-1), (0,1):}] = [{:(1, 78), (0,1):}]`, then the inverse of `[{:(1, n), (0,1):}]` is

A

`[(1,0),(12,1)]`

B

`[(1,-13),(0,1)]`

C

`[(1,0),(13,1)]`

D

`[(1,-12),(0,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the inverse of the matrix given the product of a series of matrices. Let's break down the solution step by step. ### Step 1: Understanding the Product of Matrices We are given a product of matrices of the form: \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & n-1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 78 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Finding the General Form of the Product The product of these matrices can be represented as: \[ \begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix} \] where \( S \) is the sum of the first \( n-1 \) integers. The sum of the first \( n-1 \) integers is given by: \[ S = \frac{(n-1)n}{2} \] ### Step 3: Setting Up the Equation From the problem, we know: \[ \frac{(n-1)n}{2} = 78 \] Multiplying both sides by 2 gives: \[ (n-1)n = 156 \] ### Step 4: Rearranging the Equation Rearranging the equation, we get: \[ n^2 - n - 156 = 0 \] ### Step 5: Solving the Quadratic Equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -1, c = -156 \). Calculating the discriminant: \[ b^2 - 4ac = (-1)^2 - 4 \cdot 1 \cdot (-156) = 1 + 624 = 625 \] Now substituting into the quadratic formula: \[ n = \frac{1 \pm \sqrt{625}}{2} = \frac{1 \pm 25}{2} \] This gives us two possible values for \( n \): \[ n = \frac{26}{2} = 13 \quad \text{and} \quad n = \frac{-24}{2} = -12 \] Since \( n \) must be positive, we take \( n = 13 \). ### Step 6: Forming the Matrix Now, we can form the matrix for \( n = 13 \): \[ A = \begin{pmatrix} 1 & 13 \\ 0 & 1 \end{pmatrix} \] ### Step 7: Finding the Inverse of the Matrix The inverse of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( a = 1, b = 13, c = 0, d = 1 \) - The determinant \( ad - bc = 1 \cdot 1 - 0 \cdot 13 = 1 \) Thus, the inverse is: \[ A^{-1} = \begin{pmatrix} 1 & -13 \\ 0 & 1 \end{pmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ \begin{pmatrix} 1 & -13 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}] =A, then find the value of A.

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

Find the inverse of [(2, 0,-1),( 5, 1, 0),( 0, 1, 3)]

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

If A=[(1,1),(0,1)] , show that A^2=[(1, 2),( 0, 1)] and A^3=[(1 ,3 ),(0 ,1)] .

If A=[{:(1,a),(0,1):}] then A^(n) (where n in N ) is equal to

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x...

    Text Solution

    |

  2. If Delta(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos the...

    Text Solution

    |

  3. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  4. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  5. If |(1,1,1),(2,b,c),(4,b^(2),c^(2))| and |A| = in [2, 16]. 2, b, c and...

    Text Solution

    |

  6. If A = [(1,sin theta, 1),(-sintheta, 1, sin theta),(-1, -1sin theta, 1...

    Text Solution

    |

  7. |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  8. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  9. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  10. Let d in R, and A[{:(,-2,4+d,(sin theta-2)),(,1,(sin theta)+2,d),(,5,(...

    Text Solution

    |

  11. If B = [{:(5, 2alpha, 1),(0, 2, 1),(alpha, 3, -1):}] is the inver...

    Text Solution

    |

  12. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  15. If [x] denotes the greatest integer le x, then the system of liner equ...

    Text Solution

    |

  16. Let lambda be a real number for which the system of linear equations ...

    Text Solution

    |

  17. If the system of linear equation x+y+z=5, x+2y+2z = 6, x+3y + lambda z...

    Text Solution

    |

  18. If the system of equations, 2x + 3y-z = 0, x + ky -2z = 0 " and " 2x-y...

    Text Solution

    |

  19. If the system of linear equations x-2y + kz = 1, 2x + y+ z = 2, 3x-y...

    Text Solution

    |

  20. The greatest value of for which the system of linear equations x-c...

    Text Solution

    |