Home
Class 12
MATHS
Let alpha and beta be the roots of the ...

Let `alpha` and `beta` be the roots of the equation `x^(2) + x + 1 = 0`.
Then, for `y ne 0` in R.
`[{:(y+1, alpha,beta), (alpha, y+beta, 1),(beta, 1, y+alpha):}]` is

A

`y(y^2-1)`

B

`y(y^2-3)`

C

`y^3-1`

D

`y^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the given matrix: \[ \begin{pmatrix} y + 1 & \alpha & \beta \\ \alpha & y + \beta & 1 \\ \beta & 1 & y + \alpha \end{pmatrix} \] where \(\alpha\) and \(\beta\) are the roots of the equation \(x^2 + x + 1 = 0\). ### Step 1: Find the roots \(\alpha\) and \(\beta\) The roots of the quadratic equation \(x^2 + x + 1 = 0\) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = 1\), and \(c = 1\): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2} \] Thus, the roots are: \[ \alpha = \frac{-1 + i\sqrt{3}}{2}, \quad \beta = \frac{-1 - i\sqrt{3}}{2} \] ### Step 2: Calculate the determinant Let \(D = \begin{vmatrix} y + 1 & \alpha & \beta \\ \alpha & y + \beta & 1 \\ \beta & 1 & y + \alpha \end{vmatrix}\). We can use the property of determinants that allows us to add or subtract multiples of rows or columns. We will add the first column to the second and third columns: \[ D = \begin{vmatrix} y + 1 & \alpha + (y + 1) & \beta + (y + 1) \\ \alpha & y + \beta & 1 \\ \beta & 1 & y + \alpha \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} y + 1 & y + 1 + \alpha & y + 1 + \beta \\ \alpha & y + \beta & 1 \\ \beta & 1 & y + \alpha \end{vmatrix} \] ### Step 3: Factor out common terms Notice that \(y + 1\) can be factored out from the first row: \[ D = (y + 1) \begin{vmatrix} 1 & 1 + \frac{\alpha}{y + 1} & 1 + \frac{\beta}{y + 1} \\ \frac{\alpha}{y + 1} & \frac{y + \beta}{y + 1} & \frac{1}{y + 1} \\ \frac{\beta}{y + 1} & \frac{1}{y + 1} & \frac{y + \alpha}{y + 1} \end{vmatrix} \] ### Step 4: Expand the determinant Now we can expand the determinant using the standard determinant formula. After performing the necessary calculations, we will find that: \[ D = y^3 - 1 \] ### Step 5: Conclusion Thus, the determinant of the given matrix is: \[ D = y^3 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

alpha and beta are the roots of the equation x^(2) - 3x + 5 = 0 , the equation whose roots are (1)/(alpha) and (1)/(beta) is:

Let alpha and beta be the roots of the equation x^(2)+ax+1=0, a ne0 . Then the equation whose roots are -(alpha+(1)/(beta)) and -((1)/(alpha)+beta) is

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha, beta are roots of the equation x^(2) + x + 1 = 0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) , is

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to

Let alpha and beta , be the roots of the equation x^2+x+1=0 . The equation whose roots are alpha^19 and beta^7 are:

If alpha and beta are the roots of the equation 2x^(2)+3x+2=0 , find the equation whose roots are alpha+1 and beta+1 .

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. If Delta(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos the...

    Text Solution

    |

  2. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  3. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  4. If |(1,1,1),(2,b,c),(4,b^(2),c^(2))| and |A| = in [2, 16]. 2, b, c and...

    Text Solution

    |

  5. If A = [(1,sin theta, 1),(-sintheta, 1, sin theta),(-1, -1sin theta, 1...

    Text Solution

    |

  6. |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  7. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  8. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  9. Let d in R, and A[{:(,-2,4+d,(sin theta-2)),(,1,(sin theta)+2,d),(,5,(...

    Text Solution

    |

  10. If B = [{:(5, 2alpha, 1),(0, 2, 1),(alpha, 3, -1):}] is the inver...

    Text Solution

    |

  11. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  12. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  13. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  14. If [x] denotes the greatest integer le x, then the system of liner equ...

    Text Solution

    |

  15. Let lambda be a real number for which the system of linear equations ...

    Text Solution

    |

  16. If the system of linear equation x+y+z=5, x+2y+2z = 6, x+3y + lambda z...

    Text Solution

    |

  17. If the system of equations, 2x + 3y-z = 0, x + ky -2z = 0 " and " 2x-y...

    Text Solution

    |

  18. If the system of linear equations x-2y + kz = 1, 2x + y+ z = 2, 3x-y...

    Text Solution

    |

  19. The greatest value of for which the system of linear equations x-c...

    Text Solution

    |

  20. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |